نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه میکروب شناسی و ایمنی شناسی، دانشکده دامپزشکی، دانشگاه تهران، تهران ایران تلفن: 0098-21-61117053

3 انستیتوبیوتکنولوژی، دانشگاه فردوسی مشهد، مشهد، ایران

4 گروه جراحی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

5 گروه بیوشیمی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

زمینه سرطان کولون از سرطان های رایج در جهان می‌باشد. نقش IL-17A در سرطان از مراحل اولیه تومورزایی شروع می شود و به نظر می‌رسد با ایجاد التهاب نقش مهمی در تومورزایی دارد. هدف از مطالعه حاضر بررسی میزان بیان ژن های KI67 و P53 در سلول‌های اپیتلیوم کولونHT-29 تیمار شده با IL-17A می باشد.

روش کار IL-17A خریداری شد و به میزان 50 ng/ml ، به محیط کشت HT-29، اضافه شد و پس از 24 ساعت سلول ها از محیط کشت جدا شد و نکروز سلولی با MTT بررسی گردید. سپس استخراج RNA صورت گرفت و میزان بیان P53 و KI67، با استفاده از پرایمر های جدید طراحی شده از روش Reverse transcription (RT) qPCR انجام و با نرم افزار GeniX6، مورد آنالیز قرار گرفت.

یافته ها آزمایش MTT نشان داد که غلظت 150 ng/mlبیشترین کشندگی طی 24 ساعت را دارد. پس از 24 ساعت انکوباسیون با IL-17A ، میزان بیان ژنهای KI67 (P=0.003) و P53 (P=0.001) در سلولهای HT-29در گروه تیمار شده با IL-17A بترتیب، کاهش و افزایش یافت. همچنین تعداد سلول های مورد بررسی (HT-29)در گروه تحت تیمار نسبت به گروه کنترل کاهش معنی داری را نشان داد(P < 0.05).

نتیجه گیری نتایج حاصل نشان داد IL17a می تواند با افزایش بیان P53 و کاهش KI67 موجب جلوگیری از تکثیر سلول های HT-29 در شرایط آزمایشگاهی شود. این می‌تواند زمینه برای استفاده از IL17a به عنوان عاملی برای ایمونوتراپی و پاتوژنز سرطان روده بزرگ باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The study of expression of KI67 and P53 in co-culturing of colon epithelial cell line HT-29 with IL-17A

نویسندگان [English]

  • Ali Ghorbani Ranjbary 1
  • Jalil Mehrzad 2
  • Hesam Dehghani 3
  • Abbas Abdollahi 4
  • Saman Hosseinkhani 5

1 Department of Pathobiology, Section Biotechnology, Faculty of Veterinary Medicine, and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran Tel: +98-21-61117053; Fax: +98-21-66933222

3 3. Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.

4 Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

5 Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

چکیده [English]

Background Colorectal cancer (CRC) is one of the most common cancers in the world. The role of IL-17A in cancer begins in the early stages of tumorigenesis and appears to play an important role in tumorigenesis by causing inflammation. The present study was conducted to investigate the expression of KI67 and P53 genes in HT-29 colon epithelial cells with IL-17A.

Materials and Methods IL-17A was purchased and 50 ng/ml was added to HT-29 culture medium and after 24 hours the cells were isolated from the culture medium and cell necrosis was examined by MTT. Then RNA was extracted and the expression levels of P53 and KI67 were analyzed using newly designed primers by Reverse transcription (RT) qPCR method and GeniX6 software.

Results The MTT test showed that a concentration of 150 ng/ml for 24 hours had maximal necrosis rate in HT-29. After 24 hours of IL-17A incubation, the expression of KI67 (P = 0.003) and P53 (P = 0.001) genes in HT-29 cells in the IL-17A exposed group decreased and increased, respectively. Also, compared to the control group the number of examined HT-29 cells in the IL-17A treated group showed a significant decrease (P

کلیدواژه‌ها [English]

  • KI67
  • P53
  • HT-29
  • IL17a
  • qPCR
  • cell culture
  • Squamous cell carcinoma
  1. Ranjbary AG, Mehrzad J, Dehghani H, Abdollahi A, Hosseinkhani S. Variation in blood and colorectal epithelia’s key trace elements along with expression of mismatch repair proteins from localized and metastatic colorectal cancer patients. Biological Trace Element Research. 2020; 194(1):66-75.
  2. Bade BC, Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clinics in Chest Medicine. 2020; 41(1):1-24.
  3. Pardini B, Corrado A, Paolicchi E, Cugliari G, Berndt SI, Bezieau S, Bien SA, Brenner H, Caan BJ, Campbell PT, Casey G. DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. International journal of cancer. 2020; 146(2):363-72.
  4. Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J, Zhang W, Zhong Z, Sanchez-Lopez E, Wu LW, Taniguchi K. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity. 2014; 41(6):1052-63.
  5. Mombelli S, Cochaud S, Merrouche Y, Garbar C, Antonicelli F, Laprevotte E, Alberici G, Bonnefoy N, Eliaou JF, Bastid J, Bensussan A. IL-17A and its homologs IL-25/IL-17E recruit the c-RAF/S6 kinase pathway and the generation of pro-oncogenic LMW-E in breast cancer cells. Scientific reports. 2015; 5(1):1-0.
  6. You Z, Guo N, Shen G, Zhang Y, Moustafa AA, Ge D. Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression. Frontiers in oncology. 2019; 9:546.
  7. Hurtado CG, Wan F, Housseau F, Sears CL. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology. 2018; 155(6):1706-15.
  8. Dawod B, Liu J, Gebremeskel S, Yan C, Sappong A, Johnston B, Hoskin DW, Marshall JS, Wang J. Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific reports. 2020; 10(1):1-7.
  9. Ferreira N, Mesquita I, Baltazar F, Silvestre R, Granja S. IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cellular Oncology. 2020:1-2.
  10. Muller PA, Vousden KH. P53 mutations in cancer. Nature cell biology. 2013; 15(1):2-8.
  11. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death & Differentiation. 2019; 26(2):199-212.
  12. Rimm DL, Leung SC, McShane LM, Bai Y, Bane AL, Bartlett JM, Bayani J, Chang MC, Dean M, Denkert C, Enwere EK. An international multicenter study to evaluate reproducibility of automated scoring for assessment of Ki67 in breast cancer. Modern Pathology. 2019; 32(1):59-69.
  13. Abubakar M, Figueroa J, Ali HR, Blows F, Lissowska J, Caldas C, Easton DF, Sherman ME, Garcia-Closas M, Dowsett M, Pharoah PD. Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer. Modern Pathology. 2019; 32(9):1244-56.
  14. Guo X, Jiang X, Xiao Y, Zhou T, Guo Y, Wang R, Zhao Z, Xiao H, Hou C, Ma L, Lin Y. IL-17A signaling in colonic epithelial cells inhibits pro-inflammatory cytokine production by enhancing the activity of ERK and PI3K. PloS one. 2014; 9(2):e89714.
  15. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003; 22(56):9030-40.
  16. Tiwari M. Apoptosis, angiogenesis and cancer therapies. J Cancer Ther Res. 2012; 1(1):3.
  17. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003; 9(6):653-60.
  18. Robles AI, Bemmels NA, Foraker AB, Harris CC. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 2001; 61(18):6660-4.
  19. Gouda MM, Shaikh SB, Chengappa D, Kandhal I, Shetty A, Bhandary Y. Changes in the expression level of IL-17A and p53-fibrinolytic system in smokers with or without COPD. Mol Biol Rep. 2018 Dec; 45(6):2835-2841.
  20. Gouda MM, Bhandary YP. Curcumin down-regulates IL-17A mediated p53-fibrinolytic system in bleomycin induced acute lung injury in vivo. J Cell Biochem. 2018 Sep; 119(9):7285-7299.
  21. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clinica Chimica Acta. 2019; 491:39-45.
  22. Yuan JP, Wang LW, Qu AP, Chen JM, Xiang QM, Chen C, Sun SR, Pang DW, Liu J, Li Y. Quantum dots-based quantitative and in situ multiple imaging on ki67 and cytokeratin to improve ki67 assessment in breast cancer. PloS one. 2015; 10(4):e0122734.
  23. Soliman NA, Yussif SM. Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer biology & medicine. 2016; 13(4):496.
  24. Miller I, Min M, Yang C, Tian C, Gookin S, Carter D, Spencer SL. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell reports. 2018; 24(5):1105-12.
  25. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death & Differentiation. 2018; 25(1):104-13.
  26. Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers. 2011; 3(1):994-1013.
  27. Uroz M, Wistorf S, Serra-Picamal X, Conte V, Sales-Pardo M, Roca-Cusachs P, Guimerà R, Trepat X. Regulation of cell cycle progression by cell–cell and cell–matrix forces. Nature cell biology. 2018; 20(6):646-54.