نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای تخصصی فیزیولوژی ورزشی، گروه فیزیولوژی ورزش، دانشکده علوم ورزشی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 دانشیار، دکترای تخصصی فیزیولوژی ورزشی، گروه فیزیولوژی ورزش، دانشکده علوم ورزشی، دانشگاه حکیم سبزواری، سبزوار، ایران

3 استادیار، دکترای فیزیولوژی ورزشی، گروه فیزیولوژی ورزش، دانشکده علوم ورزشی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

زمینه و هدف: چاقی، اختلال متابولیکی است که از طریق افزایش هزینه انرژی و تحریک عوامل مرتبط با قهوه­ای شدن بافت چربی سفید، قابل‌کنترل و پیشگیری است. هدف از تحقیق حاضر، بررسی تأثیر تمرین مقاومتی شدیدبر سطوح آیریزین و عامل رشد فیبروبلاست 21 در مردان دارای اضافه‌وزن بود.
مواد و روش‌ها: در این مطالعه نیمه‌تجربی، 20 مرد دارای اضافه‌وزن (میانگین 3/33±36/56سال و نمایه توده بدن 3/02±29/41 کیلوگرم بر مترمربع) از طریق فراخوان انتخاب و به‌صورت تصادفی در دو گروه تمرین مقاومتی شدید و کنترل قرار گرفتند. برنامه گروه مقاومتی به‌صورت دایره­ای با شدت 85-80 درصد یک تکرار بیشینه، سه جلسه در هفته به مدت هشت هفته انجام شد. 24 ساعت قبل و 48 ساعت بعد از دوره تمرینی سطوح سرمی آیریزین و عامل رشد فیبروبلاست 21 (FGF21) از همه آزمودنی­ها در حالت ناشتا اندازه‌گیری شد. تجزیه ‌و تحلیل داده‌ها به‌وسیله آزمون تی همبسته و آنکوا در سطح معنی­داری 0/01>P انجام شد.
یافته‌ها: سطوح سرمی آیریزین و FGF21 در گروه تمرین مقاومتی شدید در مقایسه با گروه کنترل افزایش معناداری را نشان داد (0/01>P). وزن بدن، BMI و درصد چربی بدن در گروه تمرین مقاومتی شدید در مقایسه با گروه کنترل، کاهش معناداری را نشان داد؛ درحالی‌که در گروه کنترل، افزایش معناداری مشاهده شد (0/01>P). 
نتیجه‌گیری: به نظر می‌رسد تمرین مقاومتی شدید می‌توانند به‌عنوان گامی مؤثر در تبدیل بافت چربی سفید به قهوه‌ای و بهبود ترکیب بدنی افراد دارای اضافه‌وزن و چاق مورد تأکید قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of high-intensity resistance training on Irisin and Fibroblast growth factor 21 levels in overweight men

نویسندگان [English]

  • morteza hajinia 1
  • AmirHossein Haghighi 2
  • Roya Asgari 3

1 PhD in exercise physiology, Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabsevari University, Sabsevar, Iran

2 Associate Professor, Department of Exercise Physiology, Faculty of Sport Sciences, hakim Sabsevari University, Sabsevar, Iran

3 Associate Professor, Department of Exercise Physiology, Faculty of Sport Sciences, hakim Sabsevari University, Sabsevar, Iran

چکیده [English]

Introduction: Obesity is a metabolic disorder that can be controlled and prevented by increasing energy expenditure and stimulating factors related to the browning of white adipose tissue. The aim of this study was to investigate the effect of high-intensity resistance training on Irisin and Fibroblast growth factor 21 (FGF21) levels in overweight men.
Materials and Methods: In this semi-experimental study, 20 overweight men (mean 36.56± 3.33 years and body mass index 29.41± 3.02 kg/m2) were randomly selected. They were assigned in two groups of high-intensity resistance training and control. The program of the Resistance Group was conducted in a circular shape with an intensity of 85-80% of a maximum repetition, three sessions per week for eight weeks. 24 hours before and 48 hours after the training period, serum Irisin levels and FGF21 subjects were measured in the fasting state. Data analysis was performed by correlated t-test and ANCOVA at the significance level of P<0.01.
Results: Irisin and FGF21 Serum levels in the high-intensity resistance training group showed a significant increase compared to the control group (P<0.01). Bodyweight, BMI, and body fat percentage in the high-intensity resistance training group showed a significant decrease compared to the control group, while a significant increase was observed in the control group (P<0.01).
Conclusion: It seems that high-intensity resistance training can be emphasized as an effective step in convert white adipose tissue to brown and improving the body composition of overweight and obese people.

کلیدواژه‌ها [English]

  • Resistance training
  • Irisin
  • FGF21
  • Body Composition
  • Obesity
[1]. Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocrine reviews 2018; 39(2): 79-132.
[2]. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell 2007; 131(2):242-256.
[3]. Tezze C, Romanello V, Sandri M. FGF21 as Modulator of Metabolism in Health and Disease. Frontiers in physiology 2019; 10: 419.
[4]. Weigert C, Hoene M, Plomgaard P. Hepatokines-a novel group of exercise factors. Pflügers Archiv-European Journal of Physiology 2019; 471(3): 383-396.
[5]. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC. A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481(7382): 463-468.
[6]. Fatouros IG, Kambas A, Katrabasas I, Nikolaidis K, Chatzinikolaou A, Leontsini D, Taxildaris K. Strength training and detraining effects on muscular strength, anaerobic power, and mobility of inactive older men are intensity dependent. British journal of sports medicine 2005; 39(10): 776-780.‏
[7]. Segsworth BM. Acute sprint interval exercise induces a greater FGF-21 response in comparison to work-matched continuous exercise. [dissertation]. The University of Western Ontario. 2015.
[8]. Tofighi A, Alizadeh R, Tolouei Azar J. The effect of eight weeks high intensity interval raining (HIIT) on serum amounts of FGF21 and irisin in sedentary obese women. The Journal of Urmia University of Medical Sciences 2017; 28(7): 453-466.‏
[9]. Taniguchi H, Tanisawa K, Sun X, Kubo T,  Higuchi M. Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men. The Journal of Clinical Endocrinology 2016; 101(1): 191-198.‏
[10].   Besse-Patin A, Montastier E, Vinel C, Castan-Laurell I, Louche K, Dray C. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. International Journal of Obesity (Lond) 2014; 38(5): 707-713.
[11].   Kim H, Lee HJ, So B, Son JS, Yoon D, Song W. Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiological Research 2015; 65(2): 271-279.
[12].   Tsuchiya Y, Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism 2015; 64(9): 1042-1050.‏
[13].   Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. The Journal of physiology 2014; 592(5): 1091-1107.
[14].   Wewege M, Van Den Berg R, Ward RE, Keech A. The effects of high‐intensity interval training vs. moderate‐intensity continuous training on body composition in overweight and obese adults: a systematic review and meta‐analysis. Obesity Reviews 2017; 18(6): 635-646.
[15].   García‐Hermoso A, Cerrillo‐Urbina A, Herrera‐Valenzuela T, Cristi‐Montero C, Saavedra J, Martínez‐Vizcaíno V. Is high‐intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta‐analysis. Obesity Reviews 2016; 17(6): 531-540.
[16].   Paoli  A, Pacelli F, Bargossi AM, Marcolin G, Guzzinati S, Neri M. Effects of three distinct protocols of fitness training on body composition, strength and blood lactate. J Sports Med Phys Fitness 2010; 50(1): 43-51.‏
[17].   Dunstan DW, Daly RM, Owen N, Jolley D, De Courten M, Shaw J, Zimmet P. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes care 2002; 25(10): 1729-1736.‏
[18].   American College of Sports Medicine. ACSM's resource manual for guidelines for exercise testing and prescription. 7th. USA: Lippincott Williams and Wilkins. 2013.
[19].   Brzycki M. A Practical Approach to Strength Training. Blue River Press. 2012.
[20].   Hedayati M, Saghebjoo M, Ghanbari-Niaki A. Effects of circuit resistance training intensity on the plasma ghrelin to obestatin ratios in healthy young women. International journal of endocrinology and metabolism 2012; 10(2): 475.‏
[21].   Izaddoust F, Shabani R. Effects of Strength Training on Serum Levels of Irisin and Myostatin Hormones, and Their Association with Lipid Profiles in Untrained Women. Iranian Journal of Endocrinology and Metabolism 2017; 19 (1) : 41-49.(Persian)
[22].   Huh JY, Siopi A, Mougios V, Park KH, Mantzoros CS. Irisin in response to exercise in humans with and without metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism 2015; 100(3): 453-457.‏
[23].   Heydari M, Tadibi V, Hoseini R. Effect of different rest interval between sets of resistance exercise on serum irisin and blood lactate levels in obese male children. Journal of Applied Exercise Physiology 2019; 14(28): 125-137. (Persian)
[24].   Baar K. Nutrition and the adaptation to endurance training. Sports medicine 2014; 44(1): 5-12.‏
[25].   Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS. Acute exercise induces FGF21 expression in mice and in healthy humans. PloS one 2013; 8(5): e63517.
[26].   Cuevas-Ramos  D, Almeda-Valdés  P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez  FJ, Mehta R. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PloS one 2012; 7(5):‏ e38022.
[27].   Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG. Effects of a three‐month combined exercise programme on fibroblast growth factor 21 and fetuin‐A levels and arterial stiffness in obese women. Clinical endocrinology 2011; 75(4): 464-469.
[28].   Morville T, Sahl RE, Trammell SA, Svenningsen JS, Gillum MP, Helge JW, Clemmensen C. Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI insight 2018; 3(15): e122737
[29].   Kartinah  NT, Sianipar IR, Rabia NA. High Intermittent Intensity Training Induces FGF21 Secretion in Obese Rats. Journal of Obesity and Metabolism 2018; 1(1): 1-3.‏
[30].   Dutchak PA, Katafuchi  T, Bookout AL, Choi JH, Ruth TY, Mangelsdorf  DJ, Kliewer  SA. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 2012; 148(3): 556-567.‏
[31].   Li X, Ge H, Weiszmann J, Hecht R, Li YS, Véniant MM. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS letters 2009; 583(19): 3230-3234.‏
[32].   Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell metabolism 2007; 5(6): 426-437.‏