بررسی حذف رنگ‌زای اسید رد 18 توسط کربن تهیه شده از تفاله هویج، اصلاح شده با نانوذرات آهن مغناطیسی در سیستم رآکتور چرخشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آلودگی محیط‌زیست، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

2 دانشیار گروه آموزشی آلودگی محیط‌زیست، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

3 دانشیارگروه آموزشی آلودگی محیط‌زیست، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

4 استادتمام گروه آموزشی مهندسی سرامیک- مواد، پژوهشگاه مواد و انرژی، البرز، ایران

5 دانشیار گروه آموزشی شیمی کاربردی، دانشکده شیمی دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

چکیده

زمینه و هدف: به دلیل اهمیت بالای حذف مواد رنگ‌زای سرطان‌زا از پساب‌های رنگی پیش از ورود به محیط‌زیست، در این مطالعه به بررسی پارامترهای مؤثر در حذف رنگ‌زای اسید رد 18 با یک جاذب آلی جدید ‏با کمک ترکیب دو روش فیزیکی (جاذب) و روش شیمیایی (اکسیداسیون پیشرفته) پرداخته شد.
مواد و روش‌ها: پس از طراحی و ساخت رآکتور، در هر بار آزمون 100 میلی‌لیتر نمونه داخل رآکتور در معرض تابش اشعه فرابنفش،H2O2  و کربن تهیه‌شده از ضایعات هویج قرار گرفت. در این سیستم، از لامپ UV-LED کم‌فشار در رآکتوری با حجم 5/1 لیتر استفاده شد. تعیین مشخصات جاذب با استفاده از تصاویرTEM ، SEM و XRD بررسی شد. تأثیر پارامترهای مختلف: pH، زمان، تابش UV، غلظت‌های اولیه رنگ‌زا و مقادیر مختلف از جاذب بر حذف رنگ، بررسی شد و نقاط بهینه به‌دست آمد. غلظت‌های ورودی و خروجی رنگ با دستگاه اسپکتروفتومتر اندازه‌گیری شد. تعادل، سینتیک و حداکثر ظرفیت جذب محاسبه گردید.
یافته‌ها: مشخصات فیزیکی کربن فعال مغناطیسی نشان داد که نانوذرات Fe3O4 دارای اندازه متوسط nm 22-90 و سطح ویژه برابر m2/g 480 بوده است. راندمان حذف 99 درصدی رنگ اسید رد 18 در غلظت جاذب برابر 1/5لیتر، غلظت رنگ ppm 25، pH برابر 4 و زمان 80 دقیقه اتفاق افتاد. ظرفیت جذب برابر با ‏‎ mg/g126/98‏و سینتیک فرایند جذب از مدل شبه درجه دوم (اسید رد 18، 0/99R2=) پیروی می‌کرد
نتیجه‌گیری: کربن فعال تهیه‌شده از ضایعات هویج در کنار تابش UV-LED، جاذبی کم‌هزینه، سازگار با محیط‌زیست و بسیار مؤثر در حذف رنگ با کمک فرایند (AOp S) است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Acid Red 18 removal via extracted carbon from crude carrot meal modified with Nano magnetized particles in rotary reactor system

نویسندگان [English]

  • roya moradi 1
  • morteza kashefialasl 2
  • reza marandi 3
  • esmaeil salahi 4
  • sharam moradidehaghi 5
1 PhD Student in Environmental Pollution, Faculty of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Iran.
2 Associate Professor Department of Environmental Pollution, Faculty of Marine Science and Technology, Islamic Azad University, North Tehran, Iran.
3 Associate Professor, Department of Environmental Pollution, Faculty of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Iran
4 Full Professor, (Materials Science and Engineering) Materials and Energy Research Center (MERC), Iran
5 Associate Professor Applied Chemistry Dept., Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Iran
چکیده [English]

Introduction: Since removal of dyes causing cancer from colored wastewater before releasing into environment is very important therefore in this study the effective parameters in removal of dye AR 18 with a new organic adsorbent were investigated by combining the two methods (adsorbent) and chemical method (AOPS).
Materials and Methods: Firstly, a rotary reactor was made up then for each experiment 100mL of sample was exposed to UV ray, H2O2 and extracted carbon from carrot meal. In this study low power UV lamps and in a reactor with capacity of 1.5L were used. Properties of adsorbent were studied and illustrated via TEM, SEM, XRD. Effects of parameters such as pH, UV radiation contact time, concentration of dye and concentration of adsorbent were examined and optimum points of each parameter obtained. Inlet and outlet of dye concentration was measured by spectrophotometer. adsorption Equilibrium and adsorption kinetics with maximum adsorption capacity were measured accordingly.
Results: Physical properties of active magnetite carbon showed that Fe3O4 nanoparticles had average size of 22-90 nm with the BET of 480 m2/g. acid red dye 18 was removed with 99 % efficiency where adsorbent concentration: 1/5gr.L, dye concentration: 25 ppm, pH: 4 and contact time: 80 min. adsorption capacity: 126/98 mg/g and adsorption kinetics is in line with Pseudo-second-order model (R2=0/99, AR 18).
Conclusion: Results of this study showed that using extracted carbon from carrot meal together with UV radiation as a low cost adsorbent, Eco-friendly is significantly effective in dye removal via.

کلیدواژه‌ها [English]

  • Carrot
  • advanced Photo oxidation
  • Nano magnetized carbon
  • Fe3O4 and UV-LED
[1]. Lima EC, Royer B, Vaghetti JC, Simon NM, da Cunha BM, Pavan FA, Benvenutti EV, Cataluña-Veses R, Airoldi C. Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution: kinetics and equilibrium study. Journal of hazardous materials. 2008; 15; 155(3):536-50.
[2]. Zhang WX, Lai L, Mei P, Li Y, Li YH, Liu Y. Enhanced removal efficiency of acid red 18 from aqueous solution using wheat bran modified by multiple quaternary ammonium salts. Chemical Physics Letters. 2018; 16; 710:193-201.
[3]. Wu CH. Photodegradation of CI Reactive Red 2 in UV/TiO2-based systems: Effects of ultrasound irradiation. Journal of hazardous materials. 2009; 15; 167(1-3):434-9.
[4]. Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MV. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of hazardous materials. 2010; 15; 174(1-3):694-9.
[5]. Mokhtari SA, Farzadkia M, Esrafili A, Kalantari RR, Jafari AJ, Kermani M, Gholami M. Bisphenol A removal from aqueous solutions using novel UV/persulfate/H 2 O 2/Cu system: optimization and modelling with central composite design and response surface methodology. Journal of Environmental Health Science and Engineering. 2016; 14(1):19.
[6]. Chaichanawong J, Yamamoto T, Ohmori T. Enhancement effect of carbon adsorbent on ozonation of aqueous phenol. Journal of hazardous materials. 2010; 15; 175(1-3):673-9.
[7]. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar. Bacterial decolorization and degradation of Azo dyes: A review: Journal of the Taiwan Institute of Chemical Engineers, 2011; 42: 138–157.
[8]. Metcalf and Eddy, Wastewater Engineering Treatment & Reuse, fifth ed, 5: Mcgraw-Hill Singapore, 2013.
[9]. Sara tale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar. "Bacterial decolorization and degradation of azo dyes: a review." Journal of the Taiwan Institute of Chemical Engineers. 2011:42 (1) 138-157.
[10].    Forgacs, Esther, Tibor Cserhati, and Gyula Oros. "Removal of synthetic dyes from wastewaters: a review." Environment international. 2004; (7)30: 953-971.
[11].    Wang XS, Zhou Y, Jiang Y, Sun C. The removal of basic dyes from aqueous solutions using agricultural by-products. Journal of Hazardous Materials. 2008; 15; 157(2-3):374-85.
[12].    Hasanzadeh M, Simchi A, Far HS. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. Journal of Industrial and Engineering Chemistry. 2020; 81:405-14.
[13].    Choy KK, Porter JF, Mckay G. Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon. Chemical Engineering Journal. 2004; 15; 103(1-3):133-45.
[14].    Ali I, Gupta VK. Advances in water treatment by adsorption technology. Nature protocols. 2006; 1(6):2661.
[15].    Sadeghi‐Kiakhani M, Arami M, Gharanjig K. Dye removal from colored‐textile wastewater using chitosan‐PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. Journal of Applied Polymer Science. 2013; 15; 127(4):2607-19. (Persian).
[16].   ‎ Chao-Yin K, Chung-Hsin W, Jane-Yii W. Adsorption of direct dyes from aqueous solutions ‎by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters, J ‎Colloid Interface Sci. 2008; 327:308–315.
[17].    Mousavi SA, Mohammadi N, Ghaibzadeh M, Kamri M. Efficiency of Fenton oxidation process in removing rhodamine B dye from synthetic solution. Journal of Water and Wastewater. 2015; 21; 25 (6): 122-9. (Persian)
[18].    Ehrampoush M, Ghanizadeh GH, Ghaneian M. Equilibrium and kinetics study of reactive red 123 dye removal from aqueous solution by adsorption on eggshell. Journal of Environmental Health Science & Engineering. 2011; 8(2):101-6. (Persian).
[19].    Zhou T, Lu X, Wang J, Wong FS, Li Y. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy.  J Hazardous Materials 2009; 165(1-3):193-99.
[20].    Lucas MS, Peres JA.  Decolorization of the azo dye Reactive Black 5 by fenton and Photo-Fenton oxidation.  J Dyes and Pigments 2006; 71(3): 236-44.
[21].    Kyzas GZ, Fu J, Matis KA. The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials. 2013; 6(11):5131-58.
[22].    Chevremont AC, Farnet AM, Sergent M, Coulomb B, Boudenne JL. Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs. Desalination. 2012; 31; 285:219-25.
[23].    Özdemir C, Öden MK, Şahinkaya S, Kalipçi E. Color removal from synthetic textile wastewater by sono‐fenton process. Clean–Soil, Air, Water. 2011; 39(1):60-7.
[24].    Song K, Mohseni M, Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water research. 2016;94:341-9.
[25].    Paušová Š, Riva M, Baudys M, Krýsa J, Barbieriková Z, Brezová V. Composite materials based on active carbon/TiO2 for photocatalytic water purification. Catalysis Today. 2019; 15; 328:178-82.
[26].    Bilińska L, Gmurek M, Ledakowicz S. Textile wastewater treatment by AOPs for brine reuse. Process Safety and Environmental Protection. 2017; 1; 109:420-8.
[27].    Qian L, Sun J, Hou C, Yang J, Li Y, Lei D, Yang M, Zhang S. Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta. 2017; 1; 168:174-82.
[28].    Pourmand S, Abdouss M, Rashidi A. Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent. Journal of Industrial and Engineering Chemistry. 2015; 25; 22:8-18. (Persian)
[29].    Fu N, Li L, Liu K, Kim CK, Li J, Zhu T, Li J, Tang B. A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly (ChCl-AA DES) @ Fe3O4@ MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk. Talanta. 2019; 15; 197:567-77.
[30].    Qi Y, Lu Y, Liu L, Qi X, Ding F, Li H, Huang X, Chen L, Hu YS. Retarding graphitization of soft carbon precursor: from fusion-state to solid-state carbonization. Energy Storage Materials. 2020; 26:577-84.
[31].   ‎ Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z. A functionalized ‎graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photo thermal ‎therapy, and magnetic resonance imaging. Nano Research. 2012; 1; 5(3):199-212. ‎
[32].    Yang N, Zhu S, Zhang D, Xu S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters. 2008; 29; 62(4-5):645-7.
[33].    Robati D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. Journal of nanostructure in Chemistry. 2013;3(1):1-6.
[34].   ‎ Qin G, Yao Y, Wei W, Zhang T. Preparation of hydrophobic granular silica aerogels and ‎adsorption of phenol from water. Applied Surface Science. 2013; 1; 280:806-11. ‎
[35].   ‎ Aksu Z, Akın AB. Comparison of Removal Black B biosorptive properties of live and treated ‎activated sludge. Chemical Engineering Journal. 2010; 15; 165(1):184-93.
[36].    Sadeghi M, Rahimi R, Mohammadi Moghadam F, Mengelizadeh N. Using Ash Prepared from Almond Shell for Removing Acid Red 18 from Aqueous Solutions. Journal of Shahrekord University of Medical Sciences. 2017; 19(1):126-36. (Persian)‎
[37].    Thinakaran N, Panneerselvam P, Baskaralingam P, Elango D, Sivanesan S. Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells. J Hazard Mater. 2008; 158(1): 142-50.
[38].    Shokoohi R, Vatanpoor V, Zarrabi M, Vatani A. Adsorption of Acid Red 18 (AR18) by activated carbon from poplar wood-A kinetic and equilibrium study. J Chem. 2010; 7(1): 65-72.
[39].    Eren Z, Acar FN. Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination. 2006; 10; 194(1-3):1-0.
[40].    Shirzad Siboni M, Fallah S, Tajasosi S. Removal of Acid Red 18 and Reactive Black 5 Dyes from Aquatic Solution by Using of Adsorption on Azollafiliculoides: a Kinetic Study. Journal of Gilan University of Med Sci. 2014; 1(22): 42-50.
[41].    Shirzad-Siboni M, Khataee A, Joo SW. Kinetics and equilibrium studies of removal of an azo dye from aqueous solution by adsorption onto scallop. Journal of industrial and engineering chemistry. 2014; 20(2):610-5.
[42].    Mishra AK, Arockiadoss T, Ramaprabhu S. Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chemical Engineering Journal. 2010; 162(3):1026-34.
[43].    Wu R, Qu J, Chen Y. Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo dye from water. Water research. 2005; 39(4):630-8
[44].    Yu F, Chen J, Chen L, Huai J, Gong W, Yuan Z, Wang J, Ma J. Magnetic carbon nanotubes synthesis by Fenton’s reagent method and their potential application for removal of azo dye from aqueous solution. Journal of colloid and interface science. 2012; 378(1):175-83.
[45].   ‎ Zhang WX, Lai L, Mei P, Li Y, Li YH, Liu Y. Enhanced removal efficiency of acid red 18 ‎from ‎aqueous solution using wheat bran modified by multiple quaternary ammonium salts. ‎Chemical ‎Physics Letters. 2018; 16; 710:193-201. ‎
[46].    Malakootian M, Mahdizadeh H, Khavari M, Nasiri A, Gharaghani MA, Khatami M, Sahle-Demessie ‎E, Varma RS. Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal ‎of Acid Red 18 from aqueous solutions. Journal of Environmental Chemical Engineering. 2019 ‎; 17:103553.
[47].    Chen Y, Long W, Xu H. Efficient removal of Acid Red 18 from aqueous solution by in-situ ‎polymerization of polypyrrole - chitosan composites. Journal of Molecular Liquids. 2019; 287:110888.
[48].    Samarghandi M R, Izadi D, Noori Sepehr M, Zarrabi M. Adsorption of Acid Red 18 by Activated Carbon Prepared from Cedar Tree: Kinetic and Equilibrium Study. aumj. 2012; 1 (4):226-235.
[49].    Mirzaei N, Ghaffari HR, Sharafi K, Velayati A, Hoseindoost G, Rezaei S, Mahvi AH, Azari A, ‎Dindarloo K. Modified natural zeolite using ammonium quaternary based material for Acid red 18 ‎removals from aqueous solution. Journal of environmental chemical engineering. 2017; ‎‎5(4):3151-60. (Persian).
[50].    Mahvi AH, Heibati B. Removal efficiency of azo dyes from textile effluent using activated carbon made from walnut wood and determination of isotherms of acid red18. Journal of Health. 2010;1(3):7-15.
[51].    Samarghandi M R, Rahmani A R, Shokohi R, Berizi Z. Performance Evaluation of Magnetite Nanoparticles Modified with Sodium Alginate for the Removal of Acid Red 18 Dye from Aqueous Solutions. jehe. 2014; 1 (2):104-114.