نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دکترای ژنتیک مولکولی پزشکی، گروه ژنتیک پزشکی، دانشکدة پزشکی، دانشگاه علوم پزشکی تهران

2 کارشناس‌‌‌‌‌ارشد ژنتیک مولکولی

3 کارشناس‌‌ارشد ژنتیک مولکولی

چکیده

درمان‌های برپایة گیرنده‌های آنتی‌ژن کایمری(CAR) سلول‌های T، به‌عنوان یکی از روش‌های نوین ایمنی درمانی، تحول شگرفی را در درمان سرطان پدید آورده‌اند. ازآنجا که CAR از یک آنتی بادی ایجاد می‌شوند، سلول حاصل دارای ویژگی هدف‌گیری مطلوب یک آنتی‌بادی مانند نیازنداشتن به شناسایی توسط مجموعة سازگاری بافتی (MHC) و توانایی شناسایی آنتی‌ژن‌های خودی است. این مزایای بالقوه، به شناسایی آنتی‌ژن‌های ویژة سلول‌های توموری منجر می‌شود که با فراخواندن سیتوکین‌ها و مولکول‌های کمک تحریکی دیگر، سلول‌های توموری را از بین می‌برد. در مقالة پیش‌رو، ساختار پایه‌ای و کارکرد CARها و چگونگی انتخاب اهداف آنتی‌ژنی آنها توصیف شده و پیشرفت و توسعة این فن از ابتدا تاکنون برای بهبود کارکرد در ریزمحیط تومور بررسی شد. در ادامه، چندین نمونه از درمان‌های موفق با کمک این فناوری ارائه شده و در انتها، نگاه اجمالی به عوارض جانبی این روش شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Immunotherapy usingengineered T-cells (CARs): A significantevolution in modern medical biotechnology

نویسندگان [English]

  • Mohammad Reza Noori-Daloii 1
  • Nazanin Rahimi rad 2
  • Saeedeh Kavoosi 3

1 Professor, PhD of Medical Molecular Genetics, Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 MSc in Molecular Genetics

3 MSc in Molecular Genetics

چکیده [English]

Chimeric antigen receptor- (CAR-) based immunotherapies (CARs), as one of the newest methods for immunotherapy, have heralded a new era of treating cancer. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize self antigens). These potential benefits result in the identification of tumor-sprcific antigens which in turneliminates tumor cells by summoning cytokines and co-stimulatory molecules that kill other tumor cells.
This review briefly describes basic CAR structure and function, how their antigenic targets are selected, and the development and advancements of this technology to improve their function intumor micro-environment. Afterwards, several examples of successful treatments with the help of this technology are presented and finally, we take a glance at the side effects of this method.

کلیدواژه‌ها [English]

  • ایمنی درمانی
  • درمان هدفمند
  • فناوری زیستی-پزشکی
  • گیرندة آنتی‌ژن کایمری(CAR)
  • گیرندة سلول T(TCR)
[1].  Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunological reviews. 2014; 257(1): 14-38.
[2]. Noori-Daloii MR, Tabarestani S. Molecular Genetics and gene therapy in breast cancer. The Journal of Faculty of Medicine, Sabzevar University of Medical Science. 2010; 17: 74-87. [in Persian]
[3]. Noori-Daloii MR, Zekri A. Aurora kinase family roles in cancer diagnosis and treatment. Medical Science Journal of Islamic Azad University. 2011; 21: 17-81. [in Persian]
[4]. Noori-Daloii MR. Medical molecular genetics in the third millennium. Tehran, Iran: Samer Publication; 2012. (in Persian)
[5].  Noori-Daloii MR, ed. Emery’s elements of medical genetics. 8th ed. Tehran, Iran: Jame-e-negar and Salemi Publication; 2017. (in Persian)
[6].  Immunotherapy. Experimental biology and medicine. 2015; 240(8): 1087-1098.
[7]. Noori-Daloii MR, Ebrahimzadeh-Vesal R. Telomerase and its inhibition in cancer, prevention and gene therapy in prostate cancer.Razzi J 1999; 11: 11-112. [in Persian]
[8].   Suryadevara, Carter M, et al. Are BiTEs the “missing link” in cancer therapy? Oncoimmunology. 2015;4(6): e1008339.
[9].Miao, Hongsheng, et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One. 2014; 9(4): e94281.
[10]. Firor A.E, Jares A, Ma Y. From humble beginnings to success in the clinic: chimeric antigen receptor-modified T-cells and implications for immunotherapy. Experimental biology and medicine. 2015; 240(8) 1087-1098.
[11]. Pircher M, Schirrmann T, Petrausch U. T cell engineering. Immuno-Oncology. Vol. 42. Karger Publishers. 2015; 110-135.
[12]. Dai H, et al. Chimeric antigen receptors modified T-cells for cancer therapy. Journal of the National Cancer Institute. 2016; 108(7): djv439.
[13]. Beatty G.L, et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer immunology research. 2014; 2(2): 112-120.
[14]. Smith A.J, et al. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: Summary and perspective. Journal of Cellular Immunotherapy. 2016; 2(2): 59-68.
[15]. Gargett T, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Molecular Therapy. 2016; 24(6): 1135-1149.
[16]. Van Der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nature reviews. Drug discovery. 2015; 14(7): 499.
[17]. Noori-Daloii MR, Fazilaty H, Tabrizi M. Cancer metastasis, genetic and microenvironmental factors of distant tissue: A review article. Tehran University of Medical Science. 2013; 70(11).
[18]. Grada Z, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Molecular Therapy-Nucleic Acids. 2013; 2.
[19]. Neelapu SS, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nature Reviews Clinical Oncology; 2017: nrclinonc-2017.
APA
[20]. Chmielewski M, Hombach A.A, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma." Immunological reviews. 2014; 257(1): 83-90.
[21]. Philip B, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014; 124(8): 1277-1287.
[22]. Ren J, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clinical Cancer Research. 2017; 23(9): 2255-2266.
[23]. Whilding L.M, et al. Targeting of Aberrant αvβ6 Integrin Expression in Solid Tumors Using Chimeric Antigen Receptor-Engineered T Cells. Molecular Therapy. 2017; 25(1): 259-273.
[24]. Rupp L.J, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports. 2017; 7(1): 737.
[25]. Eyquem J, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017; 543(7643): 113-117.
[26]. Jacoby E, et al. Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD. Blood. 2016; 127(10): 1361-1370.
[27]. Feinberg B.A, et al. CAR-T cells: the next era in immuno-oncology. The American journal of managed care. 2017; 23(2) Spec No: SP48.
[28]. Harris D.T, Kranz D.M. Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptors. Trends in pharmacological sciences. 2016; 37(3): 220-230.
[29]. Huang, A.C, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017; 545(7652): 60-65.