نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد بیوتکنولوژی گیاهی، مرکز علوم و تکنولوژی، دانشگاه پیام نور، تهران، ایران

2 دانشیار علوم کشاورزی، مرکز علوم و تکنولوژی، دانشگاه پیام نو، تهران، ایران

3 استاد سیستماتیک گیاهی، مرکز علوم و تکنولوژی، دانشگاه پیام نور، تهران، ایران

4 دانشجوی دکتری باکتری‌شناسی، مرکز علم و فناوری زیست‌شناسی، دانشکده علوم پایه، دانشگاه جامع امام حسین(ع)، تهران، ایران

چکیده

: غاسول صابونی دارای ایزوفرم های مختلف پروتئین ساپورین می باشد. ساپورین جزء پروتئین های غیر فعال کننده ریبوزومی (RIPs) است. ایزوفرم SO9 ساپورین ها، آدنین 4324 موجود در توالی حفاظت شده GAGA را دپورینه کرده و باعث اختلال در پروتئین سازی می‌گردد. در این مطالعه بیان ایزوفرم SO9 در باکتری E. coli و بررسی تیتر آنتی بادی آن در موش سوری انجام شد.
روش بررسی: ژن SO9 سنتز شده، از پلاسمید pUC57-SO9 نوترکیب توسط آنزیم های محدود کننده BamH1 و Sal1 جدا و در وکتور بیانی pET28a(+) زیر همسانه سازی شد. بیان پروتئین نوترکیب با IPTG القا گردید. پروتئین SO9 نوترکیب به وسیله کروماتوگرافی تمایلی نیکل خالص سازی شد. برای تایید پروتئین نوترکیب از تکنیک Western blotting استفاده شد. واکسیناسیون موش های سوری با پروتئین تخلیص شده به صورت صفاقی انجام و تیتر IgG سرم به وسیله ELISA بررسی شد.
نتایج: زیر همسانه سازی ژن SO9 در وکتور بیانی pET28a(+) به وسیله واکنش PCR و هضم آنزیمی تایید شد. حضور باند پروتئینی 29 کیلودالتون در SDS-PAGE، بیان بالای پروتئین نوترکیب را نشان داد. پروتئین نوترکیب SO9 به وسیله آنتی بادی پلی کلونال شناسایی شد. بعد از تزریق پروتئین در گروه های تست نسبت به گروه های کنترل، میزان تیتر آنتی بادی تولید شده به وسیله تست ELISA اندازه گیری شد.
نتیجه گیری: خاصیت ادجوانتی و ایمنوژنی آنتی ژن SO9 نوترکیب تخلیص شده سبب می‌شود که از این آنتی بادی برای شناسایی میزان حضور SO9 در گیاه غاسول صابونی، به عنوان کاندید واکسن، تهیه کیت تشخیصی و در مطالعات ضد سرطانی سلول های انسانی استفاده گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Subcloning and expression of SO9 gene, Saponaria Officinalis plant in E.coli and investigation of antibody titer in mouse

نویسندگان [English]

  • Amirhossein Barghi 1
  • Hossein Honari 1
  • Mohamadali Ebrahimi 2
  • Gholamreza Bakhshi Khaniki 3
  • Seyed Mojtaba aghaee 4

1 MSc in Plant Biotechnology, Science and Technology Center, Payam Noor University, Tehran, Iran

2 Associate Professor of Agricultural Sciences, Science and Technology Center, Payam Noor University, Tehran, Iran

3 Master of Systematic Vegetation, Science and Technology Center, Payam Noor University, Tehran, Iran

4 PhD. student of Bacteriology, Center for Science and Technology of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran

چکیده [English]

Introduction: Saponaria officinalis have various saponin isoforms. Saponin is a ribosome-inactivating protein (RIP). The SO9 isoform of saponins depurinates the adenine 4324 in the preserved GAGA sequence resulting in impairment of protein production. In this study, the S09 isoform was expressed in E. coli and its antibody titers were evaluated in Mouse.

Methods: The S09 gene was synthesized and isolated from the pUC57-S09 recombinant plasmid using the restriction enzymes BamH1 and Sal1, and then cloned in the expression vector pET28a(+). Expression of the new recombinant protein was induced by IPTG. The recombinant S09 protein was purified by Ni affinity chromatography. The recombinant protein was confirmed through western blotting. The Mouse were vaccinated through intraperitoneal injection of the purified protein and serum IgG titer was measured through ELISA.

Results: Subcloning of S09 gene in the pET28a(+) expression vector was confirmed by PCR and enzymatic digestion. The presence of 29 kDa protein band in SDS-PAGE showed the high expression of recombinant protein. The recombinant S09 protein was detected by polyclonal antibody. After injection of the protein to the test groups, the antibody titer was measured by ELISA.

Conclusion: The adjuvant property and immunogenicity of the purified recombinant S09 antigen showed that this antibody can be used to detect the presence of S09 in Saponaria officinal is, as a candidate for vaccine, for production of diagnostic kits, and in human cells anticancer studies.

کلیدواژه‌ها [English]

  • : Saponaria officinalis L
  • RIP
  • expression SO9
[1]. Stirpe F, Battelli M. Ribosome-Inactivating Proteins: Progress and Problems. Cellular and Molecular Life Sciences 2006; 63(16): 1850-66.
[2]. Endo Y, Tsurugi K. RNA N-glycosidase Activity of Ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. Journal of Biological Chemistry 1987; 262(17): 8128-30.
[3]. Maro AD, Ferranti P, Mastronicola M, Polito L, Bolognesi A, Stirpe F. Reliable Sequence Determination of Ribosome‐Inactivating Proteins by Combining Electrospray Mass Spectrometry and Edman degradation. Journal of mass spectrometry 2001; 36(1): 38-46.
[4]. Ferreras J, Barbieri L, Girbés T, Battelli MG, Rojo MA, Arias FJ. Distribution and Properties of major Ribosome-Inactivating Proteins (28 S rRNA N-Glycosidases) of the Plant Saponaria Officinalis L.(Caryophyllaceae). BBA 1993; 1216(1): 31-42.
[5]. Massiah AJ, Hartley MR. Wheat Ribosome-Inactivating Proteins: Seed and Leaf forms with different Sspecificities and Cofactor Requirements. Planta. 1995; 197(4): 633-40.
[6]. Barbieri L, Battelli MG, Stirpe F. Ribosome-Inactivating Proteins from Plants. BBA 1993; 1154(3-4): 237-82.
[7]. Barbieri L, Valbonesi P, Bonora E, Gorini P, Bolognesi A, Stirpe F. Polynucleotide: Adenosine Glycosidase Activity of Ribosome-Inactivating Proteins: effect on DNA, RNA and poly (A). Nucleic acids research 1997; 25(3): 518-22.
[8]. Hirao I, Madin K, Endo Y, Yokoyama S, Ellington AD. RNA Aptamers that Bind to and Inhibit the Ribosome-Inactivating Protein, Pepocin. Journal of Biological Chemistry 2000; 275(7): 4943-8.
[9]. Bruneton J. Pharmacognosy, Phytochemistry, Medicinal Plants. 2nd Edition. Lavoisier publishing; 1995: 1136 .
[10]. Frankel AE. Immunotoxins. 1st ed. Springer Science & Business Media. 2012: 100.
[11]. Sparg S, Light M, Van Staden J. Biological Activities and Distribution of Plant Saponins. Journal of ethnopharmacology 2004; 94(2): 219-43.
[12]. Benatti L, Saccardo MB, Dani M, Nitti G, Sassano M, Lorenzeti R. Nucleotide Sequence of cDNA Coding for Saporin‐6, A type‐1 Ribosome‐Inactivating Protein from Saponaria Officinalis. FEBS 1989; 183(2): 465-70.
[13]. Fabbrini MS, Rappocciolo E, Carpani D, Solinas M, Valsasina B, Breme U. Characterization of a Saporin Isoform with lower Ribosome-Inhibiting Activity. Biochemical Journal 1997; 322(3): 719-27.
[14]. Maras B, Ippoliti R, De Luca E, Lendaro E, Bellelli A, Barra D. The Amino Acid Sequence of a Ribosome-Inactivating Protein from Saponaria Officinalis Seeds. Biochemistry international 1990; 21(5): 831-8.
[15]. Schrot J, Weng A, Melzig MF. Ribosome-Inactivating and Related Proteins. Toxins 2015; 7(5): 1556-615.
[16]. Fordham-Skelton AP, Taylor PN, Hartley MR, Croy RR. Characterisation of Saporin Genes: in Vitro Expression and Ribosome Inactivation. MGG 1991; 229(3): 460-6.
[17]. Daniels-Wells TR, Helguera G, Rodríguez JA, Leoh LS, Erb MA, Diamante G. Insights into the Mechanism of Cell Death induced by Saporin Delivered into Cancer Cells by an Antibody Fusion Protein Targeting the Transferrin Receptor 1. Toxicology in Vitro 2013; 27(1): 220-31.
[18]. Kroemer G, Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC. To Die or not to Die: That is the Autophagic Question. Current Molecular Medicine 2008; 8(2): 78-91.
[19]. Leah R, Tommerup H, Svendsen I, Mundy J. Biochemical and Molecular Characterization of Three Barley Seed Proteins with Antifungal Properties. Journal of Biological Chemistry 1991; 266(3): 1564-73.
[20]. Duggar BM, Armstrong JK. The Effect of Treating the Virus of Tobacco Mosaic with the Juices of Various Plants.
[21]. Ann Mo Bot Garden 1925; 12(4): 359-66.
[22]. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd edition. Coldspring-Harbour Laboratory Press, UK. 2001.
[23]. Tonello F, Pellizzari R, Pasqualato S, Grandi G, Peggion E, Montecucco C. Recombinant and Truncated Tetanus Neurotoxin light chain: Cloning, Expression, Purification, and Proteolytic Activity. Protein Expr Purif 1999; 15(2): 221-7.
[24]. Abdollahi M, Honari H, Nazarian SH, Masoudi KM. Subcloning and Expression of SO6 Gene, Saponaria Officinalis Plant in E. coli and Investigation of Antibody Titer in Rats. J of Med Sci 2017; 24(12): 1024-1033. (persian)
[25]. Nielsen K, Boston RS. Ribosome-Inactivating Proteins: A Plant Perspective. Annu Rev Plant Biol 2001; 52(1): 785-816.
[26]. Stirpe F. Ribosome-Inactivating proteins. Toxicon 2004; 44(4): 371-83.
[27]. Walsh MJ, Dodd JE, Hautbergue GM. Ribosome-Inactivating Proteins: Potent Poisons and Molecular Tools. Virulence 2013; 4(8): 774-84.
[28]. Girbés T, Ferreras JM, Arias FJ, Stirpe F. Description, Distribution, Activity and Phylogenetic Relationship of Ribosome-Inactivating Proteins in Plants, Fungi and Bacteria. Mini-Rev. Med. Chem 2004; 4(5): 461-76.
[29]. Qi L, Nett TM, Allen MC, Sha X, Harrison GS, Frederick BA. Binding and Cytotoxicity of Conjugated and Recombinant Fusion Proteins Targeted to the Gonadotropin-Releasing Hormone Receptor. Cancer Res 2004; 64(6): 2090-5.
[30]. Bolognesi A, Polito L, Tazzari PL, Lemoli RM, Lubelli C, Fogli M. In Vitro Anti‐Tumour Activity of Anti‐CD80 and anti‐CD86 Immunotoxins Containing Type 1 Ribosome‐Inactivating Proteins. Br. J. Haematol  2000; 110(2): 351-61.
[31]. 30. Bagga S, Seth D, Batra JK. The Cytotoxic Activity of Ribosome-Inactivating Protein Saporin-6 is Attributed to its rRNA N-glycosidase and Internucleosomal DNA Fragmentation Activities. J. Biol. Chem 2003; 278(7): 4813-20.
[32]. Bolognesi A, Tazzari PL, Olivieri F, Polito L, Falini B, Stirpe F. Induction of Apoptosis by Ribosome‐Inactivating Proteins and Related Immunotoxins. J. Biol. Chem 1996; 68(3): 349-55.
[33]. Bergamaschi G, Perfetti V, Tonon L, Novella A, Lucotti C, Danova M. Saporin, a Ribosome‐Inactivating Protein used to Prepare Immunotoxins, Induces Cell Death via Apoptosis. Br. J. Haematol 1996; 93(4): 789-94.
[34]. Colaço M, Bapat M, Misquith S, Jadot M, Wattiaux-De Coninck S, Wattiaux R. Uptake and Intracellular Fate of Gelonin, a Ribosome-Inactivating Protein, in Rat Liver. Biochem. Biophys. Res. Commun 2002; 296(5): 1180-5.
[35]. Cavallaro U, Nykjaer A, Nielsen M, Soria MR. α2‐Macroglobulin Receptor Mediates Binding and Cytotoxicity of Plant Ribosome‐Inactivating Proteins. The FEBS Journal 1995; 232(1): 165-71.
[36]. McIntosh DP, Heath TD. Liposome-Mediated Delivery of Ribosome Inactivating Proteins to Cells in Citro. BBA-BIOMEMBRANES 1982; 690(2): 224-30.
[37]. Foxwell B, Long J, Stirpe F. Cytoxicity of Erythrocyte Gghosts Loaded with Ribosome-Inactivating Proteins following Fusion with CHO cells. Chem. Biochem 1984; 8(6): 811-9.
[38]. Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Lord JM. Protein Disulphide-Isomerase Reduces Ricin to its A and B Chains in the Endoplasmic Reticulum. Biochem J 2004; 383(2): 285-93.
[39]. Roberts LM, Lord JM. Ribosome-Inactivating Proteins: Entry into Mammalian Cells and Intracellular Routing. Mini-Rev. Med. Chem 2004; 4(5): 505-12.
[40]. Spooner RA, Hart PJ, Cook JP, Pietroni P, Rogon C, Höhfeld J. Cytosolic Chaperones Influence the Fate of a Toxin Dislocated from the Endoplasmic Reticulum. Proc Natl Acad Sci 2008; 105(45): 17408-13.
[41]. Polito L, Bortolotti M, Mercatelli D, Battelli MG, Bolognesi A. Saporin-S6: A Useful Tool in Cancer Therapy. Toxins 2013; 5(10): 1698-722.
[42]. Bagga S, Hosur M, Batra JK. Cytotoxicity of Ribosome‐Inactivating Protein Saporin is not Mediated Through α2‐macroglobulin receptor. FEBS lett 2003; 541(1-3): 16-20.
[43]. Vago R, Marsden CJ, Lord JM, Ippoliti R, Flavell DJ, Flavell SU. Saporin and Ricin A Chain follow different Intracellular Routes to enter the Cytosol of Intoxicated Cells. The FEBS journal 2005; 272(19): 4983-95.
[44]. Rust A, Hassan HH, Sedelnikova S, Niranjan D, Hautbergue G, Abbas SA. Two Complementary Approaches for Intracellular Delivery of Exogenous Enzymes. Sci. Rep 2015; 5: 1244.
[45]. Mir LM, Banoun H, Paoletti C. Introduction of Definite Amounts of Nonpermeant Molecules into Living Cells after Electropermeabilization: Direct Access to the Cytosol. Exp. Cell Res 1988; 175(1): 15-25.
[46]. Kodama T, Doukas AG, Hamblin MR. Delivery of Ribosome-Inactivating Protein Toxin into Cancer Cells with Shock Waves. Cancer lett 2003; 189(1): 69-75.
[47]. Selbo PK, Høgset A, Prasmickaite L, Berg K. Photochemical Internalisation: A Novel Drug Delivery System. Tumor Biol 2002; 23(2): 103-12.
[48]. Honari H, E'temad Aubi SM, Esmaili F, Abdollahi M. Evaluation of SO6 Protein in Saponaria Officinalis L. Callus. Rangeland Ecol. Manage 2018; (51): 23-31.