نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزش، دانشکدة علوم ورزشی دانشگاه تربیت دبیر شهید رجایی تهران، ایران

2 گروه فیزیولوژی ورزش، دانشکده تربیت بدنی، دانشگاه تربیت دبیر شهید رجایی تهران

3 گروه فیزیولوژی ورزش، دانشکدة علوم ورزشی دانشگاه خوارزمی تهران، ایران

4 گروه فیزیولوژی ورزش، دانشکدة علوم ورزشی دانشگاه گیلان،‌ ایران

چکیده

سابقه و هدف: بتاآلانین از مکمل های اثرگذار بر میزان لاکتات است. هدف از پژوهش حاضر بررسی اثر مصرف بتا آلانین بر لاکتات در فعالیت ارگومتر روئینگ بود.
مواد و روش ها: 24 پاروزن مرد نخبه (سن 3/3 ± 4/23 سال، قد 9/7 ± 7/186 سانتی متر و درصد چربی 1/2 ± 9/8) بطور تصادفی در سه گروه بتا آلانین، دارونما (دکستروز) یا بدون مکمل قرار گرفتند (8n= ). میزان مصرف مکمل 40 میلی‌گرم بر هر کیلوگرم وزن بدن در روز به مدت 3 هفته بود. پس از تعیین توان هوازی بیشینه ( VO2max) و کمترین سرعت رسیدن به توان هوازی (vVO2max) با تردمیل، آزمون ارگومتر جهت تعیین توان میانگین و میزان میانگین سرعت در شش دقیقه ارگومتر (vRmax)انجام گرفت و سپس زمان فعالیت تا رسیدن به واماندگی با سرعت vRmax (TvRmax) به ثبت رسید. آزمون 6 دقیقه ارگومتر با 90% vRmax انجام شد و لاکتات و ضربان قلب ثبت گردید. در انتهای دوره، همین آزمون ها تکرار شد. جهت تحلیل داده ها، روش آنالیز واریانس یک سویه و آزمون تعقیبی بونفرونی در سطح معناداری 05/0 مورد استفاده قرار گرفت.
یافته ها: لاکتات در گروه بتا آلانین در پس آزمون پس از 6 دقیقه فعالیت در 90% vRmax کاهش معنادار داشت (00/0 =p ). همچنین TvRmax و توان میانگین در گروه بتا آلانین نسبت به دو گروه دیگر بهبود معناداری یافته بود ( به ترتیب 00/0 =p و 04/0 =p). vRmax نیز در گروه بتا آلانین افزایش معناداری نشان داد (00/0 =p).
نتیجه گیری: نتایج نشان می دهد که مصرف بتا آلانین ممکن است با تاخیر در تجمع لاکتات، منجر به افزایش زمان رسیدن به خستگی در اجرای فعالیت استقامت عضلانی و بهبود توان هوازی پاروزنان نخبه شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of beta alanine on lactate level and Specific performance of elite male rowers

نویسندگان [English]

  • Mohammad Ali Gharaat 1
  • Majid Kashef 2
  • Leila Eidi Abarghani 3
  • Mohsen Sheykhlouvand 4

1 Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran

3 Department of Exercise Physiology, Faculty of Sport Sciences, Kharazmi University, Tehran, Iran

4 Department of Exercise Physiology, Faculty of Physical Education and sport Sciences, University of Guilan, Rasht, Iran

چکیده [English]

Scope: According to the role of beta-alanine in buffering, this study aimed to investigate the effects of chronic beta-alanine ingestion on rowing performance.
Materials & Methods: Twenty-four elite male rowers (age:23.4 ±3.3 years, height: 186.1± 7.9 cm, body fat percentage: 8.9 ± 2.1) randomly divided into beta-alanine (40 milligrams. Kilogram-1 body weight per day), placebo (dextrose) or no-supplement for 21 days (n=8). After evaluating Volume of O2 maximum (VO2max) and velocity in VO2max (vVO2max), test of 6 min rowing ergometer for assessing mean power output, mean velocity in 6 minutes rowing maximum (vRmax) and Time at vRmax (TvRmax), and test of 6min ergo rowing with 90% of vRmax were executed in a pre- posttest procedure Power output (P), time to exhaustion (TvRmax), lactate concentration (LA) and heart rate (HR) were recorded from ergo rowing. For analysisng the outputs, ANOVA was utilized.
Findings: Significant differences were shown in power output in 6 min@24str, vRmax (p= 0.00), TvRmax and LA in Post-test between beta-alanine and placebo or control (P= 0.00 and P= 0.04 respectively).
Conclusion: It can be concluded that ingesting beta-alanine might delay lactate accumulation and increases time to exhaustion in rowing performance.

کلیدواژه‌ها [English]

  • Beta Alanine Supplementation
  • Muscle endurance
  • Time to exhaustion
  • Elite male rowers
[1]. Gharaat MA, Sheykhlouvand M, Eidi LA. Performance and recovery: effects of caffeine on a 2000‑m rowing ergometer. J Sport Sci for Health. 2020; Available in: https://doi.org/10.1007/s11332-020-00643-5.
[2]. Gharaat MA, Ramezani AR. Effect of two high intensity interval trainings on performance and rheological characteristics of elite male rowers. J of Practic Stud of Biosci in Sport. 2018; 6 (11): 135-44. (Persian)
[3]. Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol. 2010; 109 (4): 1096-1101.
[4]. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E. Beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007; 103: 1736-43.
[5]. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006; 30: 279-89.
[6]. Hobson RM, Saunders B, Bell G. Effects of beta-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012; 43: 25-37.
[7]. Bakardijiev A, Bauer K.Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture.Eur J Biochem. 1997; 225: 617-23.
[8]. Heidari N, Kashef M. Effect of beta-alanine supplementation on Performance, Tmax and blood lactate of elite male rowers. Food Tech Nutrit. 2017; 14(3): 75-84.
[9]. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, Okroy J. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilator threshold in women. Amino Acids. 2007; 32: 381-6.
[10]. Gardner ML, Illingworth KM, Kelleher J, Wood D. Intestinal absorption of the intact peptide carnosine in men, and comparision with intestinal permeability to lactulose. J Physiol. 1991; 439: 411-22.
[11]. Boldyrev AA, Severin SE. The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Reg. 1990; 30: 175-94.
[12]. Sheykhlouvand M, Khalili E, Agha-Alinejad H, Gharaat MA. Hormonal and physiological adaptations to high-intensity interval training in professional male canoe polo athletes. Journal of Strength & Conditioning Research. 2016;30(3): 859-66.
[13]. Batrukova MA, Rubstov AM. Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. BBA Biomembranes. 1997; 1324: 142-50.
[14]. Bump K, Lawrence L, Moser L, Miller-Graber P, Kurcz E. Effect of breed of horse on muscle carnosine concentration. Comp Biochem Physiol. 1997; 195-7.
[15]. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim KC, Wise JA. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007; 32: 225-33.
[16]. Hobson RM, Harris R.C, Martin D, Smith P, Macklin B, Gualano B, Sale G. Effect of Beta-Alanine with and without sodium bicarbonate on 2,000-m rowing performance. Int J Sport Nutr & Exer Metab. 2013; 23 (5): 480-7.
[17]. Suzuki T, Ito O, Mukai N, Takahashi H, Takamatsu K. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol. 2002; 52: 199-205.
[18]. Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, et al. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Sco Sports Nutr. 2009; 6: (5): 120-133.
[19]. Smith AE, Moon JR, Kendall KL, Graef JL, Lockwood CM, Walter AA, et al. The effects of beta-alanine supplementation and high-intensity interval training on neuromuscular fatigue and muscle function. Eur J Appl Physiol. 2009; 105: 357-63.
[20]. Zoeller Rf, Stout JR, Okroy JA, Torok DJ, Mielke M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilator and lactate thresholds, and time to exhaustion. Amino Acids. 2007; 33: 505-10.
[21]. Maestu J, Jurimae J, Jurimae T. Monitoring of performance and training in rowing. Sports Med. 2005; 35 (7): 597-617.
[22]. Suzuki T, Ito O, Takahashi H, Takamatsu K. The effect of sprint training on skeletal muscle carnosine in humans. Int J Sport Health Sci. 2004; 2: 105-10.
[23]. Secher NH. The Physiology of rowing. Sports Med. 1993; 15; 23-53.
[24]. Skinner TL, Jenkins DA, Coombes JF, Taaffe DR, & Leverith MD. Dose response of Caffeine on 2000-m Rowing Performance. Med Sci Sport Exerc. 2010; 42(3), 571-76.
[25]. Secher NH, Vaago O, Jackson R. Rowing performance and maximal aerobic power of oarsmen. Scand J Sports Sci. 1982; 4: 9-11.
[26]. Vogler AJ, Rice AJ, Withers RT. Physiological responses to exercise on different models of the Concept ǁ rowing ergometer. Int J Sport Physiol Performance. 2007; 2: 360-70.
[27]. Sheykhlouvand M, Gharaat MA, Khalili E, Agha-Alinejad H. The effect of high-intensity interval training on ventilatory threshold and aerobic power in well-trained canoe polo athletes. Science & Sports. 2016; 31 (5): 283-89.
[28]. Sheykhlouvand M, Gharaat MA, Bishop P, Khalili E, Karami E, Fereshtian S. Anthropometric, physiological, and performance characteristics of elite canoe polo players. Psychology & Neuroscience. 2015;8 (2): 257-66.
[29]. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sports. 2010; 20 (2): 1-10.
[30]. VanThienen R, Van Proeyen K, VandenEynde B, Puypo J, Lefere T, Hespel P. Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc. 2009; 41: 898-903.