نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روان‌شناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

زمینه و هدف: استئوکلسین و استئوپونتین با بیماری­های دیابت و پوکی­استخوان رابطه دارند. هدف، تعیین تأثیر هشت هفته تمرین استقامتی- مقاومتی و مصرف مکمل تورین بر پروتئین­های استئوکلسین و استئوپونتین در موش نر ویستار دیابتی است.
مواد و روش‌ها: در این مطالعه ­تجربی،40 رت نر­ ویستار ­بالغ با دامنه وزنی 300-250 ­گرم و سن 6 هفته، به‌صورت تصادفی در 3 گروه دیابتی­شده (هر گروه 10 رت)، گروه تمرین، گروه مکمل و گروه کنترل و یک گروه غیردیابتی به‌عنوان گروه کنترل سالم قرار گرفتند. برای دیابتی­کردن رت­ها، 55 میلی­گرم بر هر کیلوگرم از وزن بدن استرپتوزوسین تزریق شد. قند خون بالای250 میلی­گرم بر دسی­لیتر در خون به‌عنوان دیابتی درنظر گرفته شد. تمرینات ترکیبی به مدت هشت هفته و 5 بار در هفته انجام شد. مکمل تورین به‌صورت محلول 1 درصد در ­آب روزانه مصرف شد. برای مقایسه تغییرات بین­گروهی و درون­گروهی متغیرها، ANOVA یک­راهه و تعقیبی بونفرونی استفاده شد.
یافته‌ها: استئوکلسین در گروه تمرین­دیابتی در مقایسه با کنترل­دیابتی افزایش معنی­دار (0/018=P) و در گروه کنترل­دیابتی در مقایسه با کنترل سالم، کاهش معنی­ دار داشت (0/0001=P). استئوپونتین در گروه کنترل‌دیابتی در مقایسه با کنترل‌سالم، افزایش معنی­ دار داشت (0/003=P) در حالی­که در گروه­های دیگر تفاوت معنی­داری نداشت (1/000=P). وزن بدن و BMI در گروه تمرین‌دیابتی در مقایسه با مکمل‌دیابتی، افزایش معنی­دار داشت (0/0001=P). غذای مصرفی در گروه تمرین­دیابتی در مقایسه با مکمل­دیابتی کاهش معنی­دار داشت (0/030=P).
نتیجه‌گیری: هشت هفته تمرین استقامتی- مقاومتی و مصرف مکمل تورین منجر به افزایش استئوکلسین و تغییر نکردن استئوپونتین شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of 8 Weeks of Endurance -Resistance Training and Taurine Supplementation on Osteocalcin and Osteopontin Proteins in Diabetic Wistar Rats with STZ

نویسندگان [English]

  • Fatemeh Akbari Vargsaran 1
  • Ameneh Pourrahim Ghoroghchi 2

1 Masters in Sports Physiology, Dept. of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran

2 Associate Prof, Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

Introduction: Osteocalcin and osteopontin are related to diabetes and osteoporosis. The aim was to determine the effect of eight weeks of endurance-resistance training and taurine supplementation on osteocalcin and osteopontin in diabetic male Wistar rats.
Materials and Methods: In this experimental study,40adult male Wistar rats weighing 250-300grams and 6weeks old were randomly divided into 3 diabetic groups (each group, 10Rat); exercise, supplement and a control and a non-diabetic groups were included as a healthy control group. To make diabetic, 55mg/kg of body weight of streptozocin was injected. Combined exercises were performed for eight weeks and 5times a week. Taurine supplementation was taken as a 1% solution in water daily. One-way ANOVA and Bonferroni's post hoc were used to compare the inter-group and intra-group changes of the variables.
Results: Osteocalcin increased significantly in the diabetic exercise group compared to the diabetic control (P=0.018) and decreased significantly in the diabetic control compared to the healthy (P=0.0001). Osteopontin increased significantly in the diabetic control group compared to the healthy control (P=0.003); While, there was no significant difference in other groups (P=1.000). Body weight and BMI increased significantly in the exercise-diabetic group compared to the diabetic-supplement (P=0.0001). There was a significant decrease in food consumption in the diabetic exercise group compared to the diabetic supplement group (P=0.030).
Conclusion: Eight weeks of endurance-resistance training and taurine supplementation led to an increase in osteocalcin and no change in osteopontin.

کلیدواژه‌ها [English]

  • Combined training
  • Taurine supplement
  • Osteocalcin
  • Osteopontin
  • diabetes
  1. Zheng HX, Chen DJ, Zu YX, Wang EZ, Qi SS. Chondroitin sulfate prevents STZ induced diabetic osteoporosis through decreasing blood glucose, anti-oxidative stress, anti-inflammation and OPG/RANKL expression regulation. International Journal of Molecular Sciences 2020; 21 (5303):1-14. DOI: 10.3390/ijms21155303.
  2. Levinger I, Jerums G, Stepto NK, Parker L. Theeffect of acute exercise on under carboxylated osteocalcin and insulin sensitivity in obese men. The Journal of Bone and Mineral Research 2014; 29(12):2571-6. DOI: 10.1002/jbmr.2285.
  3. El Deeb S, Abdelnaby R, Khachab A, Bläsius K, Tingart M, Rath B .Osteopontin as a biochemical marker and severity indicator for idiopathic hip osteoarthritis. HIP International 2016; 26(4): 397-403. DOI: 10.5301/hipint.5000361.
  4. Abbaszadeh Sourati H, Ebrahim KH, Nikbakht H. The effect of 16 weeks of selected aerobic exercise on serum osteopontin and osteocalcin in inactive middle-aged women. The Joint Science Education Project 2013; 5(2): 777-84. DOI: 10.22038/mjms.2018.12132 (Persian).
  5. Khorshidi D, Homai M, Azarbayjani H, Hosseinnezhad MA. The effect of a course of aerobic exercise on serum alkaline phosphatase and osteocalcin levels in type 2 diabetic patients. The Journal of Shahid Sadoughi University of Medical sciences 2011; 5(19): 685-76. URL: http://jssu.ssu.ac.ir/article-1-1743-en.html. (Persian).
  6. Dashti N, Rezaiyan N, Karimi M, Kooroshfard N. The effect of intense intermittent exercise on serum osteopontin level and insulin resistance index in sedentary, overweight and obese women. Science Education and Practice 2021; 14(2):115-26. (Persian). URL: https://doi.org/10.52547/joeppa.14.2.115.
  7. Mohammadi Moghaddam A, Tadibi V, Behpour N, Nazari A. Effects of pretreatment of continuous and intermittent endurance training on myocardial osteopontin gene expression in male Wistar rats following induction of myocardial infarction. Yafteh Journal for Medical Sciences 2019; 21(2):1-13. URL: http://yafte.lums.ac.ir/article-1-2723-en.html. (Persian).
  8. Barchetta I, Alessandri C, Bertoccini L, Cimini FA, Taverniti L, Di Franco M, et al. Increased circulating osteopontin levels in adult patients with type 1 diabetes mellitus and association with dysmetabolic profile. European Journal of Endocrinology 2016; 174(2): 187-92. DOI: 10.1530/EJE-15-0791.
  9. Li L, Chen, Shuang, L, Dong M, Li Z, Jiaheng T. Influence of exercise on bone remodeling-relate hormones and cytokines in ovariectomized rats: A model of postmenopausal osteoporosis. The Journal of PLoS One 2014; 9(11): e112845. DOI: 10.1371/journal.pone.0112845.
  10. Lester M, Urso M, Evans R, Pierce J, Spiering B, Maresh C. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone National Library of Medicine 2009; 45(4): 768-76. DOI: 10.1016/j.bone.2009.06.001.
  11. Humphries B,  Fenning  A,  Dugan  E,  Guinane J,  MacRae  Whole-body  vibration effects on bone mineral density  in women with  or without resistance training. Aerospace Medicine and Human Performance 2009; 80(12): 1025-31. DOI: 10.3357/asem.2573.2009
  12. Hagihara Y, Nakajima A, Fukuda S, Goto S, Iida H, Yamazaki M. Running exercise for short duration increases bone mineral density of loaded long bones in young growing rats. The Tohoku Journal of Experimental Medicine 2009; 219(2): 139-43. DOI: 10.1620/tjem.219.139.
  13. Batitucci G, Terrazas S, Nóbrega M, Carvalho E, Papoti M, Marchini J, et al. Effects of taurine supplementation in elite swimmers performance. Revista de Educação Física 2018; 24(1): 1-4. DOI: http://dx.doi.org/10.1590/S1980-6574201800010011.
  14. Schaffer S, Kim HW. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomolecules and therapeutics 2018; 26(3):225-41. DOI: 10.4062/biomolther.2017.251.
  15. Martiniakov M, Sarocka A, Babosova R, Galbavy D, Kapusta E, Goc Z, et al. Bone microstructure of mice after prolonged taurine treatment results on bone metabolism in alcohol-fed OVX rat model. Physiological Research 2019; 68(3): 519-23. DOI: 10.33549/physiolres.934139.
  16. Choi MJ, Seo JN. Effect of taurine feeding on bone mineral density and bone markers in rats. Advances in Experimental Medicine and Biology 2013; 776: 51-8. DOI: 10.1007/978-1-4614-6093-0-6.
  17. Choi MJ, Chang KJ, Lee JW, Jung YJ. Beneficial function of taurine on bone metabolism in alcohol-fed OVX rat model. Advances in Experimental Medicine and Biology 2017; 975(1): 1059-69. DOI: 10.1007/978-94-024-1079-2-84.
  18. Choi MJ. Effects of taurine supplementation on bone mineral density in ovariectomized rats fed calcium deficient diet. Nutrition Research and Practice 2009; 3(2): 108-13. DOI: 10.4162/nrp.2009.3.2.108.
  19. Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, et al. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Progress in Biophysics and Molecular Biology 2016; 122(2): 122-30. DOI: 10.1016/j.pbiomolbio.2015.11.005.
  20. El Deeb S, Abdelnaby R, Khachab A, Bläsius K, Tingart M, Rath B.Osteopontin as a biochemical marker and severity indicator for idiopathic hip osteoarthritis. HIP International 2016; 26(4): 397-403. DOI: 10.5301/hipint.5000361.
  21. Abbasi T, Nazarali P, Hedayati M, Alizadeh R. The effect of eight weeks of high intensity inteval training on osteoponetin and some bone min-reral indices in young women. Journal of Physical Education and Sport 2018; 8(1): 535-32. DOI: 10.7752/jpes.2018.s176. (Persian).
  22. Rostami zadeh M, Alamiyeh AR, Rahmaniniya F. The effect of aerobic and resistance exercises on the relationship between blood biochemical indices and body composition with bone resorption index in overweight men. Shahid Sadoughi University of Medical Sciences 2019; 27(5): 1540-55. DOI: 10.18502/ssu.v27i5.1522. (Persian).
  23. Sedaghat S,Choobineh A. Taurine with combined aerobic and resistance exercise training alleviates myocardium apoptosis in STZ-induced diabetes rats via Akt signaling pathway. Life Sciences 2020; 258:118. DOI: 10.1016/j.lfs.2020.118225.
  24. Thulker J, Singh Sh, Sharma S, Thulkar T. Prevantable risk factors for osteoporosis in postmenopausal women. Mid-life Health 2016; 7 (3): 108-113. DOI: 10.4103/0976-7800.191013.
  25. Biglari S, Gaeini AA, Kordi MR, Ghardashi Afousi AR. The effect of 8 weeks high-intensity interval training on myostatin and follistatin gene expression in gastrocnemius muscle of the rats. Journal of Arak University of Medical Sciences 2018; 21(1): 1-10. (Persian). URL: http://jams.arakmu.ac.ir/article-1-5477-en.html.
  26. Lu K, Wang L, Wang C, Yang Y, Hu D, Ding R. Effects of high-intensity interval versus continuous moderate‑intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Molecular Medicine Reports 2015;12(2):2374-82. doi: 10.3892/mmr.2015.3669.
  27. Ghorbanian B, Barani A. The Relationship between Serum Osteocalcin and PTH Concentrations with Glycemic, Lipid and Adiposity Parameters Subsequent 10-Weeks of Aerobic Training in Women with Type2 Diabetes. Journal of Health Promotion Management 2017; 7(1): 26-20. Doi: 10.21859/jhpm-07013 (Persian).
  28. Bilotta FL, Arcidiacono B, Messineo S. Insulin and osteocalcin further evidence for a mutual cross-talk. Journal o Endocrine National Library of Medicine. 2018; 59(3): 622-32. DOI: 10.1007/s12020-017-1396-0.
  29. De Souza R, Sitta M, Maria J, Sobrinho S, Filho WJ. Long term running exercise vs. Long term strength exercise on femoral bone mass assessed in a rat model. The Journal of Exercise Physiology online 2013; 16(2): 92-6. URL: https://www.researchgate. net/publication/ 286348280.
  30. You J, Ji H, Chang K, Yoo M, Yang H, Jeong I, et al. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Molecular Medicine Reports 2013; 8(2): 579-84. DOI: 10.3892/mmr.2013.1522.
  31. Kazemzadeh Y, Banaifar A, SHirvani H, GHeraat A. The effect of high intensity interval training HIIT on body composition, lipid profile and insulin sensitivity in overweight young men: A clinical trial study. The Joint Science Education Project 2016; 9(2): 1385-94. URL: https://joeppa.sbu.ac.ir/index.php/article_98812.html?lang=en. (Persian).
  32. Gibala M, Little J, MacDonald M, Hawley J. Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology 2012; 590(5): 1077-84. DOI: 10.1113/jphysiol.2011.224725.
  33. Whyte L, Gill J, Cathcart A. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism- Clinical and Experimental 2010; 59(2010): 1421-8. DOI: 10.1016/j.metabol.2010.01.002.
  34. Trapp E, Chisholm D, Freund J, Boucher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity 2008; 32(4): 684-91. DOI: 10.1038/sj.ijo.0803781.
  35. Maclaren D, Morton J. Biochemistry for sport and Exercise metabolism. Second publication. Tehran. Hatmi 2012; 100-250. ISBN: 978-0-470-09185-2. http://repository.universitasbumigora.ac.id