تأثیر پلاسمای غنی از پلاکت (PRP) بر سلول‌های گلیال رده B92

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد ایمنی‌شناسی، گروه میکروب‌شناسی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار ایمنی‌شناسی، گروه میکروب‌شناسی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار ویروس‌شناسی، گروه میکروب‌شناسی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

چکیده

زمینه و هدف  در مطالعات گذشته، به ارتباط برخی از سلول‌های سرطانی و پلاکت‌ها اشاره شده است. هدف از مطالعه حاضر، ارزیابی تأثیرات پلاسمای غنی از پلاکت (PRP) بر سلول‌های سرطانی گلیال رده B92 بوده است.
مواد و روش‌ها در این مطالعه تجربی، تعداد 106×1 سلول از رده B92، با درصدهای متفاوت پلاسمای غنی از پلاکت (PRP) شامل: 0، 5، 10 و 20 درصد، در محیط کشت به مدت 24 ساعت تیمار شدند. تغییرات ریخت‌شناسی سلول‌های تیمار شده با استفاده از میکروسکوپ نوری معکوس ارزیابی شد. تأثیرات PRP بر میزان تکثیر سلول‌ها با استفاده از آزمون احیای نمک تترازولیوم (دی متیل تیازول–دی فنیل تترازولیوم بروماید، MTT) سنجیده شد. به‌منظور ارزیابی سطح بیان ژن سایتوکاین‌های TNFα, IL-10 و ژن BCL-2 از تکنیک qRT- PCR استفاده شد.
یافته‌ها نتایج آزمون احیای MTT نشان داد که PRP به‌صورت کاملاً وابسته به دوز رشد سلول‌های گلیال B92 را القا می‌کند. همچنین PRP به‌صورت وابسته به دوز، موجبات افزایش بیان ژن BCL-2 را فراهم داشت. میزان بیان ژن سایتوکاین TNF-α به دنبال تیمار سلول‌های گلیال B92 با PRP به‌صورت غیروابسته به دوز کاهش یافته بود. همچنین، تیمار سلول‌های گلیال B92 با PRP به صورت غیروابسته به دوز (بدون تفاوت معنی‌دار بین درصدهای مختلف PRP) موجب افزایش سطح بیان ژن سایتوکاین ضدالتهابی IL-10 شد.­
نتیجه‌گیری در ریزمحیط سرطان، پلاکت‌ها موجبات پیش‌برد رشد و تکثیر سلول‌های گلیال B92 و فرار آن‌ها از پاسخ‌های ایمنی را فراهم می‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of Platelet Rich Plasma (PRP) on the B92 Glial Cell

نویسندگان [English]

  • Mahtab Pourkamalzadeh 1
  • Seyyed Meysam Abtahi Froushani 2
  • Alireza Mahmoudian 3
1 Master of Science in immunology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
2 Associate Professor of immunology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
3 Assistant Professor of virology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
چکیده [English]

Introduction: In previous studies, the crosstalk between some cancer cells and platelets have been documented. The purpose of the present study was to evaluate the effects of platelet-rich plasma (PRP) on B92 glial cancer cells.
Materials and Methods: In this experimental study, 1×106 B92 cells were treated with Platelet-rich plasma (PRP) for different of 0, 5, 10 and 20 percent of cutler media for 24 h. The morphological changes of the treated cells were evaluated by inverted light microscopy. The effects of PRP on the proliferation rate of cells were measured using the tetrazolium salt reduction test (dimethyl thiazole-diphenyltetrazolium bromide, MTT). QRT-PCR technique was used to evaluate the expression level of TNFα, IL-10 and BCL-2 genes.
Results: The results of the MTT reduction test showed that PRP promotes B92 glial cell growth in a dose-dependent manner. PRP in a dose-dependent manner also increased BCL-2 gene expression. The expression of the TNF-α cytokine gene was decreased in a non- percent -dependent manner after the treatment of B92 glial cells with PRP. Treatment of B92 glial cells with PRP promoted a significant increase in the expression level of the gene of anti-inflammatory IL-10 cytokine.
Conclusion: In the microenvironment of cancer, platelets promote the growth and proliferation of B92 glial cells and their escape from immune responses. 

کلیدواژه‌ها [English]

  • Platelet-rich plasma (PRP)
  • B92 glial cells
  • IL-10
  • TNF-A
  • BCL-2
[1]. Zhang W, Guo Y, Kuss M, Shi W, Aldrich AL, Untrauer J, et al. Platelet-Rich Plasma for the Treatment of Tissue Infection: Preparation and Clinical Evaluation. Tissue Eng Part B Rev. 2019;25(3):225-36.
[2]. Alves R, Grimalt R. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin appendage disorders 2018; 4(1): 18-24.
[3]. Liu CJ, Yu K, Bai J‌B, Tian D, Liu G. Platelet-rich plasma injection for the treatment of chronic Achilles tendinopathy: A meta-analysis. Medicine 2019; 98(16): 12398.
[4]. Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi A, et al. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surgery, Sports Traumatology, Arthroscopy 2018; 19(4): 528-535.
[5]. Meheux CJ, McCulloch P, Lintner D, Varner K, Harris D. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2016; 32(3): 495505.
[6]. Johal H, Khan M, Yung S-HP, Dhillon MS, Fu FH, Bedi A, et al. Impact of Platelet-Rich Plasma Use on Pain in Orthopaedic Surgery: A Systematic Review and Metaanalysis. Sports Health. 2019;11(4):355-66. [7]. Campbell K, Götze M. Radial glia: multi-purpose cells for vertebrate braindevelopment. Trends in neurosciences 2018; 25(5): 235-238.
[8]. Fuente-Martin E, Garcia-Caceres C, Morselli E, Clegg DJ, Chowen A, Finan B. Estrogen, astrocytes and the neuroendocrine control of metabolism. Reviews in Endocrine and Metabolic Disorders 2019; 14(4): 331-338.
[9]. khezri S, Salehhaggho L, Abtahi Foroushani SM. The protective role of glycyrrhizin on ethanol- damaged B92 glial cells in vitro. Armaghane danesh 2019; 24‌(3).
[10]. Jamalidoust M, Ravanshad M, Namayandeh M, Zare M, Asaei S, Ziyaeyan M. Construction of AAV-rat-IL4 and evaluation of its modulating effect on Aβ (1-42)-induced proinflammatory cytokines in primary microglia and the B92 cell line by quantitative PCR assay. Jundishapur journal of microbiology 2016; 9(3).
[11]. Shen K, Luk S, Hicks DF, Elman JS, Bohr S, Iwamoto Y, et al. Resolving cancer–stroma interfacial signalling and interventions with micropatterned tumour–stromal assays. Nature communications 2014; 5: 5662.
[12]. Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell. 2019;49(3):375-91.
[13]. Andrade SS, Sumikawa JT, Castro ED, Batista FP, ParedesGamero E, Oliveira LC, et al. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesisinfluence of platelets and fibrin bundles on the behavior of breast tumor cells Oncotarget 2017; 8(10): 16851.
[14]. Syllaios A, Tsimpoukelis A, Vagios I, Kyros E, Davakis S. Breast reconstruction with autologous fat combined with platelet rich plasma: fighting between medical novelty and cancer biology. Journal of BU ON, official journal of the Balkan Union of Oncology 2019; 24(4): 1516-1520.
[15]. Barbieri A, Bimonte S, Loquercio G, Rea D, Cascella M, et al. The effects of the use of platelet-rich plasma gel on local recurrence in an animal model of human fibrosarcoma. Infectious agents and cancer 2019; 14(1): 1-7.
[16]. Lee J, Jang H, Park S, Myung H, Kim K, et al. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. Journal of translational medicine 2019; 17(1): 1-10.
[17]. Lv Y, Zhao SG, Lu G, Leung CK, Xiong ZQ, Su, et al. Identification of reference genes for qRT-PCR in granulosa cells of healthy women and polycystic ovarian syndrome patients. Scientific reports 2017; 7(1): 6961.
[18]. Van De Moosdijk AA, Van Amerongen R. Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland. Scientific reports 2016; 6(11): 35595.
[19]. Trams E, Kulinski K, Kozar-Kaminska K, Pomianowski S, Kaminski R. The Clinical Use of Platelet-Rich Plasma in Knee Disorders and Surgery-A Systematic Review and Meta-Analysis. Life (Basel). 2020;10(6):94.
[20]. Mariani E, Pulsatelli L. Platelet Concentrates in Musculoskeletal Medicine. Int J Mol Sci. 2020;21(4):1328.
[21]. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron R. Behavior of gingival fibroblasts on titanium implant surfaces in combination with either injectable-PRF or PRP. International journal of molecular sciences 2017; 18(2): 331.
[22]. Kakudo N, Minakata T, Mitsui T, Kushida S, Notodihardjo FZ, Kusumoto K. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 2008; 122(5): 1352-60.
[23]. Navarro M, Asín M, Martínez M. Management of androgenetic alopecia: a comparative clinical study between plasma rich in growth factors and topical minoxidil. Eur J Plast Surg 2016; 39: 173-80.
[24]. Vieira L, Carling C, Barbieri FA, Aquino R, Santiago P. Match running performance in young soccer players: A systematic review. Sports Medicine 2019; 49(2): 289-318.
[25]. Zarei L, abtahi foroshani M, Garajedagi A. The effects of Bifidobacterium Bifidum (BBCWF) on proliferation of K562 cell line. J Fasa Univ Med Sci 2017; 7 (1) :21-27.
[26]. Aharoni-Simon M, Shumiatcher R, Yeung A, Shih AZ, Dolinsky VW, Doucette CA, et al. Bcl-2 regulates reactive oxygen species signaling and a redox-sensitive mitochondrial proton leak in mouse pancreatic β-cells. Endocrinology 2016; 157(6): 2270-2281.
[27]. Meng L, Ma P, Cai R, Guan Q, Wang M, Jin B. Long noncoding RNA ZEB1-AS1 promotes the tumorigenesis of glioma cancer cells by modulating the miR-200c/141-ZEB1 axis. Am J Transl Res. 2018;10(11):3395-412.
[28]. Singh B, Goldberg LJ. Autologous platelet-rich plasma for the treatment of pattern hair loss. American journal of clinical dermatology 2016; 17(4): 359-367.
[29]. Chen L, Duan H, Xie F, Gao Z, Wu X, Chen F, et al. Tetrahydroxystilbene Glucoside Effectively Prevents Apoptosis Induced Hair Loss. BioMed research international 2018; 85(4): 283-9.
[30]. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1-18.
[31]. Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR, et al. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med. 2018;16(1):242.
[32]. Zhang H, Madi A, Yosef N, Chihara N, Awasthi A, Pot C, et al. Transcriptional regulation of IL-10 in T helper cells 2019; 44(5): 207-214.
[33]. Ouyang W, O'Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity. 2019;50(4):871-91.
[34]. Rojas JM, Avia M, Martín V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. Journal of immunology research 2017; 42(7): 38-88.
[35]. Zheng C, Zhu Q, Liu X, Huang X, He C, et al. Effect of platelet‐rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro. Journal of tissue engineering and regenerative medicine 2016; 10(5): 428-436.