نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای فیزیولوژی ورزش، گروه تربیت بدنی و علوم ورزشی، دانشکده‌ ادبیات و علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران

2 دانشیار فیزیولوژی ورزش، گروه تربیت بدنی و علوم ورزشی، دانشکده‌ ادبیات و علوم انسانی، دانشگاه لرستان، خرم‌آباد، ایران

3 استادیار فیزیولوژی ورزشی، دانشکده علوم انسانی و اجتماعی، دانشگاه اردکان، اردکان، ایران

4 دکترای فیزیولوژی ورزشی، دانشگاه فرهنگیان. دانشگاه فرهنگیان کرمانشاه، پردیس شهید صدوقی، کرمانشاه، ایران

10.30468/jsums.2024.7653.2978

چکیده

زمینه و هدف: ورزش یک گزینه غیردارویی امیدوارکننده برای به‌تأخیرانداختن بالقوه شروع یا کندکردن پیشرفت آلزایمر است از این‌رو این پژوهش درصدد یافتن مکانیسم احتمالی ارتباط عضله و هیپوکمپ تحت تأثیر تمرین ورزشی شنا در رت‌های مبتلا به آلزایمر است.
مواد و روش­ها: 32 سر رت­ 6 هفته­ای به‌صورت تصادفی به چهار گروه شم (SH)، کنترل آلزایمری (AC)، تمرین (T) و تمرین آلزایمری (AT) تقسیم شدند. آلزایمر از طریق تزریق بتا آمیلوئید در هیپوکمپ القا شد. برنامه تمرین شامل 20 جلسه تمرین شنا با زمان فزاینده بود. پس از دوره تطبیقی، رت‌ها از روز پنجم تا روز بیستم به مدت 30 دقیقه شنا کردند. پس از پایان مداخله، بافت عضله دوقلو و هیپوکمپ برداشته شد و با روش رنگ‌آمیزی ایمونوهیستوفلروسنت بیان پروتئین‌های موردنظر اندازه‌گیری شد. از آزمون همبستگی برای بررسی تغییرات شاخص‌های موردمطالعه استفاده شد. سطح معنی‌داری 0/05 بود.
یافته­ها: نتایج نشان دادند که بیان پروتئین‌های مولکول چسبندگی سلول عصبی، سمافورین3A  و پروفیلین ارتباط مثبت معنی‌دار با گیرنده استیل­کولین نیکوتینی (0/001 P=) و ارتباط معکوس معنی‌دار با NLRP1 (0/05≥P) و Dead Cells (0/05≥P) داشتند.
نتیجه‌گیری: به نظر می‌رسد چون القای آلزایمر موجب تخریب پیوندگاه عصبی- عضلانی و نرون‌های عصبی حرکتی می‌شود می‌تواند در افزایش التهاب هیپوکمپ مؤثر باشد از طرف مقابل تمرینات شنا مداخله‌ای مؤثر در راستای بهبود بازسازی آکسونی و شکل‌پذیری نورونی در نورون‌های حرکتی می‌شود و از این‌رو می‌تواند یک مداخله مؤثر در جهت پیشگیری و کنترل عوارض بیماری آلزایمر در سالمندی باشد.

تازه های تحقیق

https://scholar.google.com/citations?user=qtD1ZN0AAAAJ&hl=en&citsig=AM0yFClXG23KWiTu_K1QtQSF7Fpq

https://www.ncbi.nlm.nih.gov/myncbi/????.???????%20???????.2/bibliography/public/

https://scholar.google.com/citations?user=BtPgGnEAAAAJ&hl=en,

https://www.ncbi.nlm.nih.gov/myncbi/m.f.9/bibliography/public/

https://scholar.google.com/citations?view_op=list_works&hl=en&user=Nql7U1oAAAAJ

https://www.ncbi.nlm.nih.gov/myncbi/zahra.hemati%20farsani.1/bibliography/public/

https://scholar.google.com/citations?user=jZyl67sAAAAJ&hl=en

https://www.ncbi.nlm.nih.gov/myncbi/zeinab.gorgin%20karaji.1/bibliography/public/

 

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Relationship between Neuromuscular Junction Preservation and Regeneration Factors and Hippocampal Inflammatory Factors under the Influence of Swimming Exercise in Alzheimer’s Model Rats

نویسندگان [English]

  • Mohammad solimani farsani 1
  • mohammad fathi 2
  • zahra hemati 3
  • zinab gorgin 4

1 PhD student, Dept. of Sport Sciences, Faculty of Human Sciences, Lorestan University, Khorramabad, Iran

2 Associate Prof. of Physical education, Dept. of Sport Sciences, Faculty of Human Sciences, Lorestan University, Khorramabad, Iran

3 Assistance Prof of Physical education, Department of Sport Sciences, Ardakan University, Ardakan, Iran

4 PhD of Physical education, Dept. of Physical education, Farhanguian University of Kermanshah Province, Kermanshah, Iran

چکیده [English]

Introduction: Exercise is a promising non-pharmacological option to potentially delay the onset or slow the progression of Alzheimer's disease. Therefore, this research seeks to find the possible mechanism of the connection between muscle and hippocampus under the influence of swimming exercise in rats with Alzheimer's disease. The significance level was 0.05.
Materials and Methods: Thirty-two 6-week-old rats were randomly divided into four groups: sham (SH), Alzheimer's control (AC), training (T) and Alzheimer's training (AT). Alzheimer's was induced by injecting beta-amyloid into the hippocampus. The training program consisted of 20 swimming training sessions with increasing time. After the end of the intervention, the tissue of the Gastrocnemius muscle and hippocampus was removed and the expression of the desired proteins was measured by immunohistofluorescent staining method. A correlation test was used to check the changes of the studied indicators.
Results: The results showed that the expression of neuron cell adhesion molecule, SEMA3A and profilins proteins had a significant positive relationship with NACHRa7 (P=0.001) and a significant inverse relationship with NLRP1 (P≥0.05) and Dead Cells (P≥0.05).
Conclusion: It seems that the induction of Alzheimer's causes the destruction of the neuromuscular junction and motor neurons. It can be effective in increasing hippocampus inflammation, on the other hand, swimming exercises is an effective intervention to improve axonal regeneration and neuron plasticity in motor neurons, and therefore it can be an effective intervention to prevent and control the complications of Alzheimer's disease in old age.

کلیدواژه‌ها [English]

  • Neuron Cell Adhesion Molecule
  • Profilins
  • Nicotinic Acetylcholine Receptor A7
  • Dead Cells
  1. Pahlavani HA. Exercise therapy to prevent and treat Alzheimer’s disease. Frontiers in Aging Neuroscience. 2023; 15: 1243869, doi: 10.3389/fnagi.2023.1243869.
  2. Rosenberg RN, Lambracht-Washington D, Yu G, Xia W. Genomics of Alzheimer disease: a review. JAMA neurology. 2016;73(7):867-74. doi:10.1001/jamaneurol.2016.0301
  3. Shen J, Wu J. Nicotinic cholinergic mechanisms in Alzheimer's disease. International review of neurobiology. 2015 Jan 1;124:275-92. doi. 10.1016/bs.irn.2015.08.002
  4. Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biological psychiatry. 2001 Feb 1;49(3):200-10. doi. 10.1016/S0006-3223(00)01125-2
  5. Liu L, Chan C. The role of inflammasome in Alzheimer's disease. Ageing research reviews. 2014;15:6-15. Doi:10.1016/j.arr.2013.12.007
  6. Masters SL, O’Neill LA. Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends in molecular medicine. 2011;17(5):276-82. Doi:10.1016/j.molmed.2011.01.005
  7. Miao EA, Rajan JV, Aderem A. Caspase‐1‐induced pyroptotic cell death. Immunological reviews. 2011;243(1):206-14. Doi:10.1111/j.1600-065X.2011.01044.x
  8. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, et al. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. Journal of neuroinflammation. 2012;9(1):151. http://www.jneuroinflammation.com/content/9/1/151
  9. Gorgin Karaji Z, Fathi M, Mirnasori R, van der Zee EA. Swimming exercise and clove oil can improve memory by molecular responses modification and reduce dark cells in rat model of Alzheimer's disease. Experimental Gerontology. 2023 Jun 15;177:112192. doi. 10.1016/j.exger.2023.112192
  10. Rutishauser U, Acheson A, Hall AK, Mann DM, Sunshine J. The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science. 1988 Apr 1;240(4848):53-7. DOI: 10.1126/science.3281256
  11. Venkova K, Christov A, Kamaluddin Z, Kobalka P, Siddiqui S, Hensley K. Semaphorin 3A signaling through neuropilin-1 is an early trigger for distal axonopathy in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Journal of Neuropathology & Experimental Neurology. 2014 Jul 1;73(7):702-13. doi. 10.1097/NEN.0000000000000086
  12. Good PF, Alapat D, Hsu A, Chu C, Perl D, Wen X, Burstein DE, Kohtz DS. A role for semaphorin 3A signaling in the degeneration of hippocampal neurons during Alzheimer's disease. Journal of neurochemistry. 2004 Nov;91(3):716-36. doi. 10.1111/j.1471-4159.2004.02766.x
  13. Alkam D, Feldman EZ, Singh A, Kiaei M. Profilin1 biology and its mutation, actin (g) in disease. Cellular and Molecular Life Sciences. 2017 Mar;74:967-81. doi. 10.1007/s00018-016-2372-1
  14. Tanaka Y, Nonaka T, Suzuki G, Kametani F, Hasegawa M. Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation. Human molecular genetics. 2016 Apr 1;25(7):1420-33. doi. 10.1093/hmg/ddw024
  15. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Frontiers in aging neuroscience. 2014 Aug 11;6:208. Doi:10.3389/fnagi.2014.00208
  16. Degens H. The role of systemic inflammation in age‐related muscle weakness and wasting. Scandinavian journal of medicine & science in sports. 2010;20(1):28-38. Doi:10.1111/j.1600-0838.2009.01018.x
  17. Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, et al. The origins of age-related proinflammatory state. Blood. 2005;105(6):2294-9. DOI 10.1182/blood-2004-07-2599
  18. Pedersen BK. Physical activity and muscle–brain crosstalk. Nature Reviews Endocrinology. 2019 Jul;15(7):383-92, doi. 10.1038/s41574-019-0174-x
  19. Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H. Sarcopenia and muscle functions at various stages of Alzheimer disease. Frontiers in neurology. 2018 Aug 28;9:710. doi.10.3389/fneur.2018.00710
  20. Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Archives of neurology. 2010 Apr 12;67(4):428-33. doi:10.1001/archneurol.2010.38
  21. Stewart R, Masaki K, Xue QL, Peila R, Petrovitch H, White LR, Launer LJ. A 32-year prospective study of change in body weight and incident dementia: the Honolulu-Asia Aging Study. Archives of neurology. 2005 Jan 1;62(1):55-60. doi:10.1001/archneur.62.1.55
  22. Johnson DK, Wilkins CH, Morris JC. Accelerated weight loss may precede diagnosis in Alzheimer disease. Archives of neurology. 2006 Sep 1;63(9):1312-7. doi:10.1001/archneur.63.9.1312
  23. Kim H, Hirano H, Edahiro A, Ohara Y, Watanabe Y, Kojima N, Kim M, Hosoi E, Yoshida Y, Yoshida H, Shinkai S. Sarcopenia: Prevalence and associated factors based on different suggested definitions in community‐dwelling older adults. Geriatrics & gerontology international. 2016 Mar;16:110-22. doi. 10.1111/ggi.12723
  24. Farsani MS, Fathi M, Farsani ZH, Karaji ZG. Swimming alters some proteins of skeletal muscle tissue in rats with Alzheimer-like phenotype. Archives of Gerontology and Geriatrics. 2024;117:105260. doi.10.1016/j.archger.2023.105260
  25. Ryan SM, Kelly ÁM. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer’s disease. Ageing research reviews. 2016 May 1;27:77-92. doi. 10.1016/j.arr.2016.03.007.
  26. Limón D, Díaz A, Hernandez M, Fernandez-G JM, Torres-Martínez AC, Pérez-Severiano F, Rendón-Huerta EP, Montaño LF, Guevara J. Neuroprotective effect of the aminoestrogen prolame against impairment of learning and memory skills in rats injected with amyloid-β-25–35 into the hippocampus. European journal of pharmacology. 2012 Jun 15;685(1-3):74-80. doi. 10.1016/j.ejphar.2012.04.020.
  27. Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. Elsevier health sciences; 2008.
  28. Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. Journal of neurophysiology. 2016 Sep 1;116(3):1304-15. doi. 10.1152/jn.00248.2016.
  29. Pan JX, Lee D, Sun D, Zhao K, Xiong L, Guo HH, Ren X, Chen P, Lopez de Boer R, Lu Y, Lin H. Muscular Swedish mutant APP-to-Brain axis in the development of Alzheimer’s disease. Cell Death & Disease. 2022 Nov 10;13(11):952. doi. 10.1038/s41419-022-05378-4
  30. Moon Y, Moon WJ, Kim JO, Kwon KJ, Han SH. Muscle strength is independently related to brain atrophy in patients with Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders. 2019 Jul 16;47(4-6):306-14. doi. 10.1159/000500718.
  31. Filardi M, Barone R, Bramato G, Nigro S, Tafuri B, Frisullo ME, Zecca C, Tortelli R, Logroscino G. The relationship between muscle strength and cognitive performance across Alzheimer's disease clinical continuum. Frontiers in Neurology. 2022 May 12;13:833087. doi.10.3389/fneur.2022.833087
  32. Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JY, Juo SH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Communication and Signaling. 2023 Dec;21(1):1-6. doi. 10.1186/s12964-023-01158-5.
  33. Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY). 2012;4(3):166. Doi:10.18632%2Faging.100444
  34. Khakroo Abkenar I, Rahmani-Nia F, Lombardi G. The effects of acute and chronic aerobic activity on the signaling pathway of the inflammasome NLRP3 complex in young men. Medicina. 2019;55(4):105.doi:10.3390/medicina55040105
  35. Alkadhi KA, Dao AT. Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer's disease. Molecular and Cellular Neuroscience. 2018;86:25-9. Doi:10.1016/j.mcn.2017.11.008
  36. Parri HR, Hernandez CM, Dineley KT. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer's disease. Biochemical pharmacology. 2011;82(8):931-42. Doi:10.1016/j.bcp.2011.06.039
  37. Tan M-S, Yu J-T, Jiang T, Zhu X-C, Wang H-F, Jia C-D, et al. Amyloid-β Induces NLRP1-Dependent Neuronal Pyroptosis in Alzheimer's Disease (P1. 239). Neurology. 2014;82(10 Supplement):P1. 239. Doi:10.1038%2Fcddis.2014.348
  38. Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, et al. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial. PloS one. 2017;12(2):e0170547. Doi:10.1371/journal.pone.0170547
  39. Mejías-Peña Y, Estébanez B, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, de Paz JA, et al. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging (Albany NY). 2017;9(2):408. Doi:10.18632/aging.101167
  40. Song S-H, Jee Y-S, Ko I-G, Lee S-W, Sim Y-J, Kim D-Y, et al. Treadmill exercise and wheel exercise improve motor function by suppressing apoptotic neuronal cell death in brain inflammation rats. Journal of exercise rehabilitation. 2018;14(6):911. Doi:10.12965%2Fjer.1836508.254
  41. Stephen R, Hongisto K, Solomon A, Lönnroos E. Physical activity and Alzheimer’s disease: a systematic review. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2017 Jun 1;72(6):733-9. Doi:10.1093/gerona/glw251
  42. Wu MY, Zou WJ, Lee D, Mei L, Xiong WC. APP in the Neuromuscular Junction for the Development of Sarcopenia and Alzheimer’s Disease. International Journal of Molecular Sciences. 2023 Apr 25;24(9):7809. doi. 10.3390/ijms24097809
  43. Arosio, B., Calvani, R., Ferri, E., Coelho-Junior, H. J., Carandina, A., Campanelli, F., . . . Picca, A. (2023). Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle–Brain Axis. Nutrients, 15(8), 1853. doi.org/10.3390/nu15081853.
  44. Ghadiri Hormati L, Aminaei M, Dakhili AB. The effect of high-intensity exercise training on gene expression of semaphorin 3A in extensor digitorum longus muscles of aged C57bl/6 mice. Journal of Ilam University of Medical Sciences. 2017 May 15;25(1):92-102.doi. 10.29252/sjimu.25.1.92
  45. Ando S, Osanai D, Takahashi K, Nakamura S, Shimazawa M, Hara H. Survival motor neuron protein regulates oxidative stress and inflammatory response in microglia of the spinal cord in spinal muscular atrophy. Journal of pharmacological sciences. 2020 Dec 1;144(4):204-11. doi. 10.1016/j.jphs.2020.09.001
  46. Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal glial crosstalk: specific and shared mechanisms in Alzheimer’s disease. Brain Sciences. 2022 Jan 3;12(1):75. doi. 10.3390/brainsci12010075