نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه تربیت بدنی و علوم ورزشی، واحد علی‌آباد کتول، دانشگاه آزاد اسلامی، علی‌آباد کتول، ایران

2 استادیار، گروه عمومی و پایه، واحد هشتگرد، دانشگاه آزاد اسلامی، البرز، ایران

3 دانشیار، گروه علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران

4 استادیار، گروه تربیت بدنی و علوم ورزشی، واحد یادگار امام خمینی (ره) شهر ری، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

زمینه و هدف  مسیر کمپلکس یک هدف راپامایسین در پستانداران (mTORC1) از مسیرهای مهم سنتز پروتئین در قلب می‌باشد که در بیماران دیابتی نوع 1 می‌تواند منجر به نقص شود و عاملی برای هیپرتروفی پاتولوژیک باشد. هدف از مطالعه حاضر، بررسی تأثیر تمرین تناوبی پرشدت (HIIT) بر مسیر mTORC1 در بافت عضله قلب موش‌های صحرایی مبتلا به دیابت نوع 1 می‌باشد.
مواد و روش‌ها در این مطالعه، 16 سر موش صحرایی نر 3 ماهه نر از نژاد اسپراگ‌داولی با میانگین وزن 20±300 گرم انتخاب ‏شدند و پس از دیابتی شدن نوع 1 از طریق محلول استرپتوزوتوسین، به روش تصادفی به 2 گروه، تمرین دیابتی (8 سر) و کنترل دیابتی (8 سر) تقسیم ‏شدند؛ گروه تمرینی 4 روز در هفته مطابق با برنامه تمرینی به‏ مدت 4 هفته به تمرین ورزشی پرداختند؛ در حالی که گروه کنترل هیچ‌گونه برنامه تمرینی نداشتند. برای تجزیه‌وتحلیل داده‌ها از آزمون t-مستقل استفاده‏ شد.
یافته‌هاافزایش معنی‌داری در محتوای پروتئین‌های AKT1 (p <0/027)، mTOR (p <0/003) و P70S6K1 (p <0/024) در گروه‌ تمرین نسبت به کنترل مشاهده شد؛ اما تغییر معنی‌داری در محتوای 4EBP1 (p <0/75) در گروه‌ تمرین نسبت به کنترل مشاهده نشد.
نتیجه‌گیریتمرین تناوبی پرشدت به مدت 4 هفته توانست مسیر AKT1/mTOR/P70S6K1 را در مسیر mTORC1 فعال کند. بنابراین، HIIT از این مسیر می‌تواند منجر به هیپرتروفی فیزیوژلویک در قلب آزمودنی‌های دیابتی نوع 1 شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

High intensity interval training leads to protein synthesis through the complex pathway of a target of rapamycin (mTORC1) in the heart muscle tissue of a type 1 diabetic rats

نویسندگان [English]

  • neda Aghaei Bahmanbeglou 1
  • mohammad sherafati moghadam 2
  • farhad daryanoosh 3
  • Saeedeh Shadmehri 4
  • Shiva Jahani Golbar 4

1 Assistant Professor, Department of Physical Education and Sport Sciences, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

2 Assistant Professor, Department of Pure and Basic Science, Hashtgerd Branch, Islamic Azad University, Alborz, Iran

3 Associate Professor, Department of exercise physiology, Faculty of Education and Psychology, University of Shiraz, Shiraz, Iran.

4 Assistant Professor, Department of Physical Education and Sport Sciences, Yadegar-e-imam Khomeini (RAH) Shahr-e Ray Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

Introduction: The complex pathway of a rapamycin target in mammals (mTORC1) is one of the important pathways in protein synthesis in the heart, which in type 1diabetes can led to impairment and is a factor for hypertrophy. The aim of this study is to investigate the effect of high intensity interval training (HIIT) on the mTORC1 pathway in heart muscle tissue of type 1 diabetic rats. Materials and Methods: In this experimental study, 16 SpragueDawley male rats (with mean weight of 300±20 gr) were selected and after induction of diabetes by STZ and nicotinamide were randomly assigned into two groups: diabetic training (8 head) and diabetic control (8 head). The experimental group performed 4 days a week the exercise training for 4 weeks, while the control group did not have any training program. Independent T-test was used to analyze the data. Results: There was a significant increase in the content of AKT1 (p < 0.027), mTOR (p < 0.003) and P70S6K1 (p < 0.024) proteins in the training group compared to control group, while significant change was not observed in the content of 4EBP1 (p < 0.75) in the training group compared to control group. Conclusion: HIIT for 4 weeks can activate the pathway AKT1/mTOR/P70S6K1 on the mTORC1 pathway. Therefore, HIIT by this pathway could lead to physiologic hypertrophy in the heart of type 1 diabetic subjects.

کلیدواژه‌ها [English]

  • Heart Muscle
  • HighIntensity Interval Training
  • mTORC1 Pathway
  • Type 1 Diabetes
[1]. Daryanoosh F, Bazgir B, Alizadeh H. Effect of aerobic trainings on heart’s functioned and structure in diabetic Sprague-dawely albino species male rats. Res Appl Exercise Physiol 2010; 6(12):59-72.
[2]. Hölscher M, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter?. International journal of molecular sciences 2016; 17(12):2136.
[3]. Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World journal of diabetes 2014; 5(6):860.
[4]. Grøntved A, Pan A, Mekary RA, Stampfer M, Willett WC, Manson JE, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS medicine 2014; 11(1): 115.
[5]. Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. American Journal of PhysiologyEndocrinology and Metabolism 2011; 302(2): 201-8.
[6]. Jia G, Habibi J, DeMarco VG, Martinez-Lemus LA, Ma L, Whaley-Connell AT, et al. Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension 2015; 66 (6): 1159-67.
[7]. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature Reviews Endocrinology 2016;12(3):144-53.
[8]. Liao J, Li Y, Zeng F, Wu Y. Regulation of mTOR pathway in exercise-induced cardiac hypertrophy. International journal of sports medicine 2015; 36(05):343-50.
[9]. Kurdi A, Martinet W, De Meyer GR. mTOR inhibition and cardiovascular diseases: dyslipidemia and atherosclerosis. Transplantation 2018; 102(2S): 44-6.
[10]. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274–293. [11]. Gharaat M A, Kashef M, Jameie B, Rajabi H. Effect of endurance and high intensity interval swimming training on cardiac structure and Hand2 expression of rats. JSSU. 2017; 25 (9) :748-758. [12]. Sciarretta S, Forte M, Frati G, Sadoshima J. New insights into the role of mTOR signaling in the cardiovascular system. Circulation research 2018; 122(3):489-505.
[13]. Vergès B. mTOR and cardiovascular diseases: diabetes mellitus. Transplantation 2018; 102(2S): 47-9.
[14]. Mohammadi R, Matin Homaee H, Azarbayjani MA, Baesi K. The Effects of 12 week Endurance Training on glucose amount, Blood insulin and Heart Structure in type 2 diabetic Rats. Community Health journal 2015; 9(3): 29-36.
[15]. Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014; 114:549–564.
[16]. Lane MT, Herda TJ, Fry AC, Cooper MA, Andre MJ, Gallagher PM. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey. Biol Sport 2017; 34(2): 197-203.
[17]. Khoramshahi S. Effect of five weeks of high-intensity interval training on the expression of miR-23a and Atrogin-1 in gastrocnemius muscles of diabetic male rats. Iran J Endo Metab 2017; 18 (5): 361-7.[farsi]
[18]. Bird SR, Hawley JA. Exercise and type 2 diabetes: new prescription for an old problem. Maturitas. 2012 1;72(4):311-6.
[19]. Francois ME, Little JP. Effectiveness and safety of highintensity interval training in patients with type 2 diabetes. Diabetes Spectrum. 2015 1;28(1):39-44.
[20]. Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise‐ related proteome signature in skeletal muscle. Proteomics. 2016 Mar;16(5):816-30.
[21]. Bacurau AV, Jannig PR, de Moraes WM, Cunha TF, Medeiros A, Barberi L, et al. Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. International journal of cardiology 2016; 214:137-47.
[22]. Kwon I, Jang Y, Cho JY, Jang YC, Lee Y. Long-term resistance exercise-induced muscular hypertrophy is associated with autophagy modulation in rats. J Physiol Sci 2018; 68 (3): 269-80.
[23]. Thakur V, Gonzalez M, Pennington K, Nargis S, Chattopadhyay M. Effect of exercise on neurogenic inflammation in spinal cord of Type 1 diabetic rats. Brain research 2016; 1642:87-94.
[24]. Fallahi A, Gaeini A, Shekarfroush S, Khoshbaten A. Cardioprotective effect of high intensity interval training and nitric oxide metabolites (NO2−, NO3−). Iran J Public Health 2015; 44 (9):1270-6.
[25]. Garcia NF, Sponton AC, Delbin MA, Parente JM, Castro MM, Zanesco A, et al. Metabolic parameters and responsiveness of isolated iliac artery in LDLr-/-mice: role of aerobic exercise training. American journal of cardiovascular disease 2017; 7(2):64-71.
[26]. Khani M, Motamedi P, Dehkhoda MR, Nikukheslat SD, Karimi P. Effect of thyme extract supplementation on lipid peroxidation, antioxidant capacity, PGC-1α content and endurance exercise performance in rats. J Int Soc Sports Nutr 2017; 14 (1): 1-8.
[27]. Call JA, Chain KH, Martin KS, Lira VA, Okutsu M, Zhang M, et al. Enhanced Skeletal Muscle Expression of Extracellular Superoxide Dismutase Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell SignalingCLINICAL PERSPECTIVE. Circulation: Heart Failure 2015; 8(1):188-97.
[28]. Ma Z, Qi J, Meng S, Wen B, Zhang J. Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. European journal of applied physiology 2013; 113(10):2473-86.
[29]. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, et al. Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature 2000; 408(6815):994-7.
[30]. Shigeyama Y, Kobayashi T, Kido Y, Hashimoto N, Asahara SI, Matsuda T, et al. Biphasic response of pancreatic β-cell mass to ablation of tuberous sclerosis complex 2 in mice. Molecular and cellular biology 2008; 28(9):2971-9.
[31]. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2):274-93. [32]. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. Journal of cellular physiology 2008; 214(2):316-21.
[33]. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6):960-76.
[34]. Figueiredo VC, Markworth JF, Cameron-Smith D. Considerations on mTOR regulation at serine 2448: implications for muscle metabolism studies. Cellular and Molecular Life Sciences 2017; 74(14):2537-45.