Document Type : Original Article

Authors

1 Ph.D student, Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

2 Assistant Professor, Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

3 Assistant Professor, Department of Biology, Faculty of Basic Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

4 Associate Professor, Department of Pathology, Imam Khomeini-Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

10.30468/jsums.2024.7734.3037

Abstract

Introduction: The most common cause of cervical cancer is human papillomavirus, which induces its carcinogenic properties on cells through E6 and E7 oncoproteins. Viral miRNA and oncogenes can alter the expression levels of human miRNAs and genes. Examining the expression profile of miRNAs and their target genes in cervical cancer leads to the identification of miRNAs and genes that can be used as diagnostic biomarkers or therapeutic targets. MAP9 is one of the predicted targets of HPV16-miR-H2-1. In this study, changes in the MAP9 expression level and a human miRNA regulating MAP9 were investigated in cervical cancer, and their potential as diagnostic biomarkers or therapeutic targets was evaluated.
Materials and Methods: After predicting miRNAs regulating MAP9 using the miRDB server, one of these miRNAs assosiated with squamous cell carcinoma was selected for quantification in clinical samples. Formalin-fixed, paraffin-embedded blocks of cervical tissue from 30 patients with squamous cell carcinoma were used. Deparaffinization, RNA extraction, DNase treatment, and cDNA synthesis were performed. The expression level of selected miRNA and MAP9 in tumor and normal samples was investigated by the Real-Time PCR method. The results were statistically analyzed.
Results: The significant upregulation of hsa-miR-142-5p and downregulation of MAP9 were observed in tumor samples compared with normal tissues. Roc curve analysis showed that hsa-miR-142-5p and MAP9 have high diagnostic capability for cervical cancer (AUC are 0.80 and 0.81 respectively).
Conclusion: hsa-miR-142-5p and MAP9 have the potential to be used as diagnostic biomarkers or therapeutic targets for cervical cancer.

Keywords

Main Subjects

  1. Golfetto L, Alves EV, Martins TR, Sincero TCM, Castro JBS, Dannebrock C, et al. PCR-RFLP assay as an option for primary HPV test. Braz J Med Biol Res. 2018; 51(5):e7098. doi: 10.1590/1414-431X20177098.
  2. Seoud M, Tjalma WA, Ronsse V. Cervical adenocarcinoma: moving towards better prevention. Vaccine. 2011; 29(49):9148-58. doi: 10.1016/j.vaccine.2011.09.115.
  3. Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol. 2014; 26:13-21. doi: 10.1016/j.semcancer.2013.11.002.
  4. Pastrana DV, Peretti A, Welch NL, Borgogna C, Olivero C, Badolato R, et al. Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. mSphere. 2018; 3(6):e00645-18. doi: 10.1128/mSphereDirect.00645-18.
  5. World health organization. Human Papillomavirus (HPV) and Cervical Cancer. https://www.who.int/en/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer.
  6. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007; 121(3):621-32. doi: 10.1002/ijc.22527.
  7. Crosbie EJ, Einstein MH, Franceschi S, C Kitchener H. Human papillomavirus and cervical cancer. Lancet. 2013; 382(9895): 889-99. doi:10.1016/S0140-6736(13)60022-7.
  8. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010; 10(8):550-60. doi: 10.1038/nrc2886.
  9. Koivusalo R, Mialon A, Pitkänen H, Westermarck J, Hietanen S. Activation of p53 in cervical cancer cells by human papillomavirus E6 RNA interference is transient, but can be sustained by inhibiting endogenous nuclear export-dependent p53 antagonists. Cancer Res. 2006; 66(24):11817-24. doi: 10.1158/0008-5472.CAN-06-2185.
  10. Münger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989; 8(13):4099-105. doi: 10.1002/j.1460-2075.1989.tb08594.x.
  11. Liu X, Clements A, Zhao K, Marmorstein R. Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem. 2006; 281(1):578-86. doi: 10.1074/jbc.M508455200.
  12. Chiantore MV, Mangino G, Iuliano M, Zangrillo MS, De Lillis I, Vaccari G, et al. Human papillomavirus E6 and E7 oncoproteins affect the expression of cancer-related microRNAs: additional evidence in HPV-induced tumorigenesis. J Cancer Res Clin Oncol. 2016; 142(8):1751-63. doi: 10.1007/s00432-016-2189-1.
  13. Harden ME, Prasad N, Griffiths A, Munger K. Modulation of microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins. mBio. 2017; 8(1):e02170-16. doi: 10.1128/mBio.02170-16.
  14. Qian K, Pietilä T, Rönty M, Michon F, Frilander MJ, Ritari J, et al. Identification and validation of human papillomavirus encoded microRNAs. PLoS One. 2013; 8(7):e70202. doi: 10.1371/journal.pone.0070202.
  15. Saffin JM, Venoux M, Prigent C, Espeut J, Poulat F, Giorgi D, et al. ASAP, a human microtubule-associated protein required for bipolar spindle assembly and cytokinesis. Proc Natl Acad Sci U S A. 2005; 102(32):11302-7. doi: 10.1073/pnas.0500964102.
  16. Basbous J, Knani D, Bonneaud N, Giorgi D, Brondello JM, Rouquier S. Induction of ASAP (MAP9) contributes to p53 stabilization in response to DNA damage. Cell Cycle. 2012; 11(12):2380-90. doi: 10.4161/cc.20858.
  17. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020; 48(D1):D127-31. doi:10.1093/nar/gkz757.
  18. Cui C, Zhong B, Fan R, Cui Q. HMDD v4.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2024; 52(D1):D1327-32. doi: 10.1093/nar/gkad717.
  19. Monroy BY, Tan TC, Oclaman JM, Han JS, Simó S, Niwa S, et al. A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Dev Cell. 2020; 53(1):60-72.e4. doi: 10.1016/j.devcel.2020.01.029.
  20. Eot-Houllier G, Venoux M, Vidal-Eychenié S, Hoang MT, Giorgi D, Rouquier S. Plk1 regulates both ASAP localization and its role in spindle pole integrity. J Biol Chem. 2010; 285(38):29556-68. doi: 10.1074/jbc.M110.144220.
  21. Rouquier S, Pillaire MJ, Cazaux C, Giorgi D. Expression of the microtubule-associated protein MAP9/ASAP and its partners AURKA and PLK1 in colorectal and breast cancers. Dis Markers. 2014; 2014:798170. doi: 10.1155/2014/798170.
  22. Fontenille L, Rouquier S, Lutfalla G, Giorgi D. Microtubule-associated protein 9 (Map9/Asap) is required for the early steps of zebrafish development. Cell Cycle. 2014; 13(7):1101-14. doi: 10.4161/cc.27944.
  23. Mok EHK, Leung CON, Lee TKW. MAP9/ERCC3 signaling cascade: A new insight on understanding the chromosomal instability in hepatocellular carcinoma. EBioMedicine. 2020; 54:102709. doi: 10.1016/j.ebiom.2020.102709.
  24. Rasheed MN. Evaluation of DNA methylation of MAP9 gene in breast cancer as epigenetic biomarker. Biomedicine. 2022; 42(2): 27-9. Doi:10.51248/.v42i2.1074
  25. Zhang J, Huang JZ, Zhang YQ, Zhang X, Zhao LY, Li CG, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020; 53:102701. doi: 10.1016/j.ebiom.2020.102701.
  26. Wang S, Huang J, Li C, Zhao L, Wong CC, Zhai J, et al. MAP9 Loss Triggers Chromosomal Instability, Initiates Colorectal Tumorigenesis, and Is Associated with Poor Survival of Patients with Colorectal Cancer. Clin Cancer Res. 2020; 26(3):746-57. doi: 10.1158/1078-0432.CCR-19-1611.
  27. Zhang C, Han B, Guo Y, Guan H, Chen Z, Liu B, et al. MAP9 Exhibits Protumor Activities and Immune Escape toward Bladder Cancer by Mediating TGF-β1 Pathway. J Oncol. 2022; 2022:3778623. doi: 10.1155/2022/3778623.
  28. Ke L, Chen Y, Li Y, Chen Z, He Y, Liu J, et al. miR-142-5p promotes cervical cancer progression by targeting LMX1A through Wnt/β-catenin pathway. Open Med (Wars). 2021; 16(1):224-36. doi: 10.1515/med-2021-0218.