Document Type : Original Article

Authors

1 MSc in Animal Physiology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

2 Professor, Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

3 Assistant Professor, Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran

4 PhD in Animal Physiology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Background: The present study was designed to evaluate the effect of intra-central amygdala nucleus (CeA) administration of methyl jasmonate (MeJA) on anxiety-like and social behaviors in adult male rats exposed to acute stress.
Materials and Methods: The adult male rats were bilaterally cannulated in CeA. The rats were subjected to restraint stress conditions 1 h daily for a week. Then, the rats were treated with intra-CeA administration of MeJA (2.5, 5 and 10 µg/rat). Rats’ behaviors were assessed in elevated plus maze (EPM), open field (OF), and a three-chambered social approach task, respectively.
Results: Rats exposed to restraint stress showed significant anxiogenic behaviors in EPM and OF tasks. However, bilateral microinjection of MeJA (5 and 10 µg/rat) in CeA decreased stress induced anxiety-like behavior indices in both tasks (p<0.01, p<0.05).  In addition, stressed rats showed social behavior deficits in the three-chambered social approach task (decreased sniffing time and time spent in compartment with stranger rats) as compared to untreated control rats. However, MeJA (10 µg/rat) ameliorated social behavior deficiency in stressed rats.
Conclusion: The data of this study showed MeJA value for attenuating stress-induced anxiety-like and social behavior deficits in rats.

Keywords

Main Subjects

  1. Kalisch R, Baker DG, Basten U, Boks MP, Bonanno GA, Brummelman E, et al. The resilience framework as a strategy to combat stress-related disorders. Nature human behaviour. 2017;1(11):784-90. doi: 10.1038/s41562-017-0200-8.
  2. Novais A, Monteiro S, Roque S, Correia-Neves M, Sousa N. How age, sex and genotype shape the stress response. Neurobiology of stress. 2017;6:44-56. doi: 1016/j.ynstr.2016.11.004
  3. Quinn ME, Shields GS. The insidious influence of stress: An integrated model of stress, executive control, and psychopathology. Clinical Psychological Science. 2023; 11(5): 773–800. doi: 1177/21677026221149736
  4. Firth-Cozens J. A perspective on stress and depression. Understanding doctors' performance: CRC Press; 2023. p. 22-37.
  5. Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biological psychiatry. 2015;77(10):859-69. doi: 10.1016/j.biopsych.2014.09.008.
  6. Gaffrey MS, Luby JL, Belden AC, Hirshberg JS, Volsch J, Barch DM. Association between depression severity and amygdala reactivity during sad face viewing in depressed preschoolers: an fMRI study. Journal of affective disorders. 2011;129(1-3):364-70. doi: 1016/j.jad.2010.08.031
  7. Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, et al. Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron. 2004;44(6):1043-55. doi: 10.1016/j.neuron.2004.12.006.
  8. Gao F, Huang J, Huang G-B, You Q-L, Yao S, Zhao S-T, et al. Elevated prelimbic cortex-to-basolateral amygdala circuit activity mediates comorbid anxiety-like behaviors associated with chronic pain. The Journal of Clinical Investigation. 2023;133(9). doi: 10.1172/JCI166356.
  9. Ventura-Silva AP, Melo A, Ferreira AC, Carvalho MM, Campos FL, Sousa N, et al. Excitotoxic lesions in the central nucleus of the amygdala attenuate stress-induced anxiety behavior. Frontiers in behavioral neuroscience. 2013;7:32. doi: 10.3389/fnbeh.2013.00032.
  10. Bickart KC, Wright CI, Dautoff RJ, Dickerson BC, Barrett LF. Amygdala volume and social network size in humans. Nature neuroscience. 2011;14(2):163-4.  doi: 1038/nn.2724
  11. Ward EL. Jasmonic acid and methyl jasmonate attenuate neuroinflammation via crosstalk with the prostaglandin E2/receptor EP2 signaling axis. bioRxiv. 2023:2023.10. 31.564983. doi: https://doi.org/10.1101/2023.10.31.564983
  12. Zhang M, Zhang MW, Zhang L, Zhang L. Methyl jasmonate and its potential in cancer therapy. Plant signaling & behavior. 2015;10(9):e1062199. doi: 1080/15592324.2015.1062199
  13. Besson JCF, de Carvalho Picoli C, Matioli G, Natali MRM. Methyl jasmonate: a phytohormone with potential for the treatment of inflammatory bowel diseases. Journal of Pharmacy and Pharmacology. 2018;70(2):178-90. doi: 10.1111/jphp.12839.
  14. Hemati T, Abbasnejad M, Mollashahi M, Esmaeili-Mahani S, Shahraki A. Activation of L-type calcium channels and attenuation of oxidative stress are involved in the improving effect of methyl jasmonate on learning and memory and its anxiolytic property in rats. Behavioural pharmacology. 2021;32(4):286-94. doi: 10.1097/FBP.0000000000000611.
  15. Gameiro GH, da Silva Andrade A, de Castro M, Pereira LF, Tambeli CH, de Arruda Veiga MCF. The effects of restraint stress on nociceptive responses induced by formalin injected in rat's TMJ. Pharmacology Biochemistry and Behavior. 2005;82(2):338-44. doi: 10.1016/j.pbb.2005.09.003. 
  16. de Figueiredo Cerqueira MM, Castro MML, Vieira AA, Kurosawa JAA, do Amaral Junior FL, de Siqueira FdCC, et al. Comparative analysis between Open Field and Elevated Plus Maze tests as a method for evaluating anxiety-like behavior in mice. Heliyon. 2023;9(4). doi: 10.1016/j.heliyon.2023.e14522.
  17. Askari-Zahabi K, Abbasnejad M, Kooshki R, Raoof M, Esmaeili-Mahani S, Pourrahimi AM, et al. The role of basolateral amygdala orexin 1 receptors on the modulation of pain and psychosocial deficits in nitroglycerin-induced migraine model in adult male rats. The Korean Journal of Pain. 2022;35(1):22-32. doi: 3344/kjp.2022.35.1.22
  18. Ma S, Morilak DA. Norepinephrine release in medial amygdala facilitates activation of the hypothalamic‐pituitary‐adrenal axis in response to acute immobilisation stress. Journal of neuroendocrinology 17(1):22-8. doi: 10.1111/j.1365-2826.2005.01279.x..
  19. Myers DA, Gibson M, Schulkin J, Van-Meerveld BG. Corticosterone implants to the amygdala and type 1 CRH receptor regulation: effects on behavior and colonic sensitivity. Behavioural brain research. 2005; 3;161(1):39-44. doi: 10.1016/j.bbr.2005.03.001.
  20. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatric disease and treatment. 2015:165-75. doi: 2147/NDT.S58841
  21. Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, et al. Hypothalamus and post-traumatic stress disorder: a review. Brain sciences. 2023;13(7):1010. doi: 3390/brainsci13071010
  22. Pomrenze MB, Tovar-Diaz J, Blasio A, Maiya R, Giovanetti SM, Lei K, et al. A corticotropin releasing factor network in the extended amygdala for anxiety. Journal of Neuroscience. 2019;39(6):1030-43. doi: 10.1523/JNEUROSCI.2143-18.2018.
  23. Ventura-Silva AP, Borges S, Sousa N, Rodrigues AJ, Pêgo JM. Amygdalar corticotropin-releasing factor mediates stress-induced anxiety. Brain research. 2020;1729:146622. doi: 10.1016/j.brainres.2019.146622. 
  24. Giustino TF, Ramanathan KR, Totty MS, Miles OW, Maren S. Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. Journal of neuroscience. 2020;40(4):907-16. doi: 10.1523/JNEUROSCI.1092-19.2019. 
  25. McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review. Neuroscience & Biobehavioral Reviews. 2019;105:190-9. doi: 10.1016/j.neubiorev.2019.06.009.
  26. Umukoro S, Aluko OM, Eduviere AT, Owoeye O. Evaluation of adaptogenic-like property of methyl jasmonate in mice exposed to unpredictable chronic mild stress. Brain Research 2016;121:105-14.  doi: 10.1016/j.brainresbull.2015.11.016. 
  27. Adebesin A, Adeoluwa OA, Eduviere AT, Umukoro S. Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice. Journal of psychiatric research. 2017;94:29-35. doi: 10.1016/j.jpsychires.2017.06.007. 
  28. Aluko OM, Umukoro S. Methyl jasmonate reverses chronic stress-induced memory dysfunctions through modulation of monoaminergic neurotransmission, antioxidant defense system, and Nrf2 expressions. Naunyn-Schmiedeberg's Archives of Pharmacology. 2020;393(12):2339-53. doi: 10.1007/s00210-020-01939-6. 
  29. Chen RJ, Nabila A, Phalke S, Castro DF, Toth JG, Bergin P, et al. Serotonin-1A receptor, a psychiatric disease risk factor, influences offspring immunity via sex-dependent genetic nurture. Iscience. 2022;25(12).  doi: 10.1016/j.isci.2022.105595.
  30. Eduviere AT, Umukoro S, Aderibigbe AO, Ajayi AM, Adewole FA. Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice. Life sciences. 2015;132:20-6. doi: 10.1016/j.lfs.2015.04.007. 
  31. Pereira-Maróstica HV, Castro LS, Gonçalves GA, Silva FM, Bracht L, Bersani-Amado CA, et al. Methyl jasmonate reduces inflammation and oxidative stress in the brain of arthritic rats. 2019;8(10):485. doi: 10.3390/antiox8100485.
  32. Kim M, Kim S, Park K, An H, Choi Y, Lee N, et al. Methyl jasmonate inhibits lipopolysaccharide-induced inflammatory cytokine production via mitogen-activated protein kinase and nuclear factor-κB pathways in RAW 264.7 cells. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2016;71(9):540-3. doi: 10.1691/ph.2016.6647.
  33. Knezevic E, Nenic K, Milanovic V, Knezevic NN. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells. 2023;12(23):2726.  https://doi.org/10.3390/cells12232726

 

 

  1.