Document Type : Original Article

Authors

1 PhD student in animal physiology, Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Assistant Professor, Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Introduction: The common marmoset's performance in saccadic eye movements is similar to that of humans and macaques as a regular model in vision research, and phylogenetically, it is a primate that is intermediate in the evolution between rodents and macaques. Therefore, with high cognitive capabilities and the potential to use molecular techniques, it is a suitable option for research. In this study, the characteristics of saccadic eye movements were investigated in two species of the marmoset family.
Materials and Methods: Two common marmoset and one black-tufted marmoset were investigated after head-post implantation surgery and training in behavioral tasks to measure the characteristics of saccadic eye movements. After extracting the saccades, amplitude, velocity, duration, and inter-saccades interval were used to compare. To compare the data, the overlap of histograms and boxplots along with statistical tests were used.
Results: In all measured characteristics, a large overlap between histograms and boxplots in the distribution of saccades data was observed between three animals. However, the statistical comparison of the data shows a significant difference between the saccade characteristics (P<0.001).
Conclusion: Despite the differences between species, the similarity in eye saccadic characteristics in two species of common marmoset and black-tufted marmoset indicates the possibility of using both species in vision research.

Keywords

Main Subjects

  1. D’Souza JF, Price NSC, Hagan MA. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network. Brain Struct Funct. 2021;226(9):3007–22. doi: 10.1007/s00429-021-02367-9
  2. Mitchell JF, Reynolds JH, Miller CT. Active vision in marmosets: A model system for visual neuroscience. J Neurosci. 2014;34(4):1183–94. doi: 10.1523/JNEUROSCI.3899-13.2014
  3. Kishi N, Sato K, Sasaki E, Okano H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ. 2014;56(1):53–62. doi: 10.1111/dgd.12109
  4. Solomon SG, Rosa MGP. A simpler primate brain: The visual system of the marmoset monkey. Front Neural Circuits. 2014;8(AUG):96. doi: 10.3389/fncir.2014.00096
  5. Schiel N, Souto A. The common marmoset: An overview of its natural history, ecology and behavior. Dev Neurobiol. 2017;77(3):244–62. doi: 10.1002/dneu.22458
  6. Power ML, Adams J, Solonika K, Colman RJ, Ross C, Tardif SD. Diet, digestion and energy intake in captive common marmosets (Callithrix jacchus): research and management implications. Sci Rep. 2019;9(1):1–9. doi: 10.1038/s41598-019-48643-x
  7. Malukiewicz J, Boere V, Fuzessy LF, Grativol AD, De Oliveira E Silva I, Pereira LCM, et al. Natural and anthropogenic hybridization in two species of eastern Brazilian marmosets (Callithrix jacchus and C. penicillata). PLoS One. 2015;10(6). doi: 10.1371/journal.pone.0127268
  8. Schiller PH, Tehovnik EJ. Neural mechanisms underlying target selection with saccadic eye movements. In: Progress in Brain Research. 2005. p. 157–71. doi: 10.1016/S0079-6123(05)49012-3
  9. Nelson MD, Hughes HC. Inhibitory processes mediate saccadic target selection. Percept Mot Skills. 2007;105(3 I):939–58. doi: 10.2466/PMS.105.3.939-958
  10. Ghahremani M, Hutchison RM, Menon RS, Everling S. Frontoparietal functional connectivity in the common marmoset. Cereb Cortex. 2017;27(8):3890–905. doi: 10.1093/cercor/bhw198
  11. Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron. 2016;90(2):219–33. doi: 10.1016/j.neuron.2016.03.018
  12. Wakabayashi M, Koketsu D, Kondo H, Sato S, Ohara K, Polyakova Z, et al. Development of stereotaxic recording system for awake marmosets (Callithrix jacchus). Neurosci Res. 2018;135:37–45. doi: 10.1016/j.neures.2018.01.001
  13. Chen CY, Matrov D, Veale R, Onoe H, Yoshida M, Miura K, et al. Properties of visually guided saccadic behavior and bottom-up attention in marmoset, macaque, and human. J Neurophysiol. 2021;125(2):437–57. doi: 10.1152/jn.00312.2020
  14. Ma L, Selvanayagam J, Ghahremani M, Hayrynen LK, Johnston KD, Everling S. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol. 2020;123(3):896–911. doi: 10.1152/JN.00614.2019
  15. Mitchell JF, Leopold DA. The marmoset monkey as a model for visual neuroscience. Neurosci Res. 2015;93:20–46. doi: 10.1016/j.neures.2015.01.008
  16. Saito A. The marmoset as a model for the study of primate parental behavior. Neurosci Res. 2015;93:99–109. doi: 10.1016/j.neures.2014.12.011
  17. Prins NW, Pohlmeyer EA, Debnath S, Mylavarapu R, Geng S, Sanchez JC, et al. Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies. J Neurosci Methods. 2017;284:35–46. doi: 10.1016/j.jneumeth.2017.04.004
  18. Johnston KD, Barker K, Schaeffer L, Schaeffer D, Everling S. Methods for chair restraint and training of the common marmoset on oculomotor tasks. J Neurophysiol. 2018;119(5):1636–46. doi: 10.1152/jn.00866.2017
  19. Hwang J, Mitz AR, Murray EA. NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB. J Neurosci Methods. 2019;323:13–21. doi: 10.1016/j.jneumeth.2019.05.002
  20. Cloherty SL, Yates JL, Graf D, Deangelis GC, Mitchell JF. Motion Perception in the Common Marmoset. Cereb Cortex. 2020;30(4):2658–72. doi: 10.1093/cercor/bhz267
  21. Lu T, Liang L, Wang X. Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates. J Neurophysiol. 2001;85(6):2364–80. doi: 10.1152/jn.2001.85.6.2364
  22. Ghahremani M, Johnston KD, Ma L, Hayrynen LK, Everling S. Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets. J Neurophysiol. 2019;122(4):1765–76. doi: 10.1152/jn.00417.2019
  23. Sedaghat-Nejad E, Herzfeld DJ, Hage P, Karbasi K, Palin T, Wang X, et al. Behavioral training of marmosets and electrophysiological recording from the cerebellum. J Neurophysiol. 2019;122(4):1502–17. doi: 10.1152/jn.00389.2019
  24. Sasaki E. Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci Res. 2015;93:110–5. doi: 10.1016/j.neures.2015.01.011
  25. Macdougall M, Nummela SU, Coop S, Disney A, Mitchell JF, Miller CT. Optogenetic manipulation of neural circuits in awake marmosets. J Neurophysiol. 2016;116(3):1286–94. doi: 10.1152/jn.00197.2016
  26. Ebina T, Obara K, Watakabe A, Masamizu Y, Terada SI, Matoba R, et al. Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset. Proc Natl Acad Sci U S A. 2019;116(45):22844–50. doi: 10.1073/pnas.1903445116.