Document Type : Original Article

Authors

1 PhD in Physical Education and Sports Science, Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.

2 M.Sc of Hematology laboratory, Department of Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.

3 Professor, Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.

4 Assistant Professor of Hematology, Department of Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.

5 PhD in biochemistry and sport metabolic, Department of exercise physiology, Faculty of sport sciences, Mazandaran University, Babolsar, Iran.

Abstract

Introduction: Diabetes is one of the most important health problems in the world. The aim of this study was to evaluate the response of a session of resistance exercise with blood flow restriction (REBFR) to hemodynamic and hematological changes in type 2 diabetic patients.
Materials and Methods: Fifteen patients with type 2 diabetes performed knee flexion and extension of the resistance exercise with and without BFR in two sessions with intensity of 20% and 80% 1RM, respectively. Hemodynamic and hematological changes were measured at before, immediately and 30 minutes after exercise. Repeated analysis of variance was used to evaluate the effect of the intervention on quantitative factors.
Results: The mean values ​​of systolic and diastolic blood pressure and heart rate values ​​in both training sessions were not significantly different (P <0.05). The results showed that there was no significant difference between WBC, RBC, HCT, Hb, MCH, MCHC, MCV and PV indices between resistance exercise sessions with and without BFR (P <0.05). According to the findings, the amount of RBC and Hb increased significantly immediately after REBFR (P <0.05), which returned to resting levels after 30 minutes of recovery.
Conclusion: Low-intensity REBFR due to no significant change in hemodynamic, hematological and platelet parameters can be an effective and low-cost mechanism in preventing cardiovascular disease in patients with type 2 diabetes and as a Non-pharmacological treatment system and alternative to high-intensity resistance exercise to prevent muscle atrophy, especially in clinical populations, especially diabetics.

Keywords

Main Subjects

  1. Malm C, Jakobsson J, Isaksson A. Physical Activity and Sports—Real Health Benefits: A Review with Insight into the Public Health of Sweden. Sports. 2019; 7(127): 1–28. doi: 10.3390/sports7050127.
  2. Giallauria F, Strisciuglio T, Cuomo G, Di Lorenzo A, D’Angelo A, Volpicelli M, Izzo R, Manzi MV, Barbato E, Morisco C. Exercise training: the holistic approach in cardiovascular prevention. High Blood Pressure & Cardiovascular Prevention. 2021;28(6):561-77. doi: 10.1007/s40292-021-00482-6. Epub 2021 Nov 1.
  3. Maurya A, Murallidharan JS, Sharma A, Agarwal A. Microfluidics geometries involved in effective blood plasma separation. Microfluidics and Nanofluidics. 2022;26(10):1-38. doi: 10.1007/s10404-022-02578-4. Epub 2022 Sep 4.
  4. El-Sayed MS, Ali N, El-Sayed Ali Z. Haemorheology in exercise and training. Sports Med. 2005; 35: 649–70. doi: 10.2165/00007256-200535080-00001.
  5. Shadiow J, Tarumi T, Dhindsa M, Hunter SD. A comparison of blood viscosity and hematocrit levels between yoga practitioners and sedentary adults. International Journal of Exercise Science. 2019;12(2):425.
  6. Kucukal E, Man Y, Hill A, Liu S, Bode A, An R, Kadambi J, Little JA, Gurkan UA. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. American journal of hematology. 2020;95(11):1246-56. doi: 10.1002/ajh.25933. Epub 2020 Aug 10.
  7. Irace C, Carallo C, Scavelli F, De Franceschi MS, Esposito T, Gnasso A. Blood viscosity in subjects with normoglycemia and prediabetes. Diabetes care. 2014;37(2):488-92. doi: 10.2337/dc13-1374. Epub 2013 Sep 23.
  8. Yoshida K, Kimura T, Aoki T, Tsunekawa K, Araki O, Shoho Y, Nara M, Sumino H, Murakami M. Fasting serum insulin levels and insulin resistance are associated with blood rheology in Japanese young adults without diabetes. Journal of International Medical Research. 2016;44(3):496-507. doi: 10.1177/0300060515627561. Epub 2016 Feb 26.
  9. Fini EM, Salimian M, Ahmadizad S. Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clinical Hemorheology and Microcirculation. 2022;80(3):281-9. doi: 10.3233/CH-211229.
  10. Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, et al. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J Appl Physiol. 2005; 99(1):95-102. doi: 10.1152/japplphysiol.00129.2005.
  11. Ahmadizad S and El-Sayed M.S. The acute effects of resistance exercise on the main determinants of blood rheology, J. Sports Sci. 2005; 23: 243–249. doi: 10.1080/02640410410001730151.
  12. Ahmadizad S, El-Sayed M.S and MacLaren D.P. Effects of water intake on the responses of haemorheological variables to resistance exercise, Clin. Hemorheol. Microcirc. 2006; 35: 317–327. https://pubmed.ncbi.nlm.nih.gov/16899951/
  13. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S, Pacini G, et al. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil. 2005; 86(8): 1527-1533. doi.org/10.1016/j.apmr.2005.01.007
  14. Gomides RS, Dias RM, Souza DR, Costa LA, Ortega KC, Mion D, et al. Finger blood pressure during leg resistance exercise. Int. J. Sports Med. 2010; 31(8): 590-395. doi: 10.1055/s-0030-1252054.
  15. Forberg SI, Storen O, Fredriksen PM. Blood pressure during leg extension in children. Int. J. Sports Med. 2012; 33(10): 802-806. doi: 10.1055/s-0032-1304589. Epub 2012 May 4.
  16. Bourdon PC, Cardinale M, Murray A, Gastin P, Kellmann M, Varley MC, et al. Monitoring Athlete Training Loads: Consensus Statement. Int J Sports Physiol Perform. 2017; 12(2): S2-161-S2-170. doi: 10.1123/IJSPP.2017-0208.
  17. Park SY, Kwak YS, Harveson A, Weavil JC, Seo KE. Low intensity resistance exercise training with blood flow restriction: insight into cardiovascular function, and skeletal muscle hypertrophy in humans. Korean J Physiol Pharmacol. 2015; 19(3):191-6. doi: 10.4196/kjpp.2015.19.3.191.
  18. Simão R, Fleck SJ, Polito M, Monteiro W, Farinatti P. Effects of resistance training intensity, volume, and session format on the postexercise hypotensive response. J. Strength Cond. Res. 2005; 19(4):853-8. doi: 10.1519/R-16494.1.
  19. Taghizadeh M, Ahmadizad S, Hovanloo F, Akbarinia A. Hemodynamic changes in response to concentric and eccentric isokinetic contractions and subsequent recovery period. Iranian journal of cardiovascular nursing. 2013; 2(2):48-56. [Article in Farsi] http://journal.icns.org.ir/article-1-177-en.html
  20. Akbarinia A, Ahmadizad S, Ebrahim K, Basami M, Shemshaki A, Karami R. Effects of different types of isokinetic contraction on hemodynamic parameters in men. J. Mod. Rehabil. 2013; 7(2):61-69. http://mrj.tums.ac.ir/article-1-5013-en.html
  21. Rezk CC, Marrache RC, Tinucci T, Mion D, Forjaz CL. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. Eur. J. Appl. Physiol. 2006; 98(1):105-112. doi: 10.1007/s00421-006-0257-y. Epub 2006 Aug 3.
  22. Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T. Vascular endothelium-derived factors and arterial stiffness in strength-and endurance-trained men. Am. J. Physiol. Heart Circ. 2007; 292(2):H786-91. doi: 10.1152/ajpheart.00678.2006. Epub 2006 Sep 22.
  23. Sawczyn S, Mishchenko V, Moska W, Sawczyn M, Jagiełło M, Kuehne T, Kostrzewa-Nowak D, Nowak R, Cięszczyk P. Strength and aerobic training in overweight females in Gdansk, Poland. Open Medicine. 2015;10(1). doi: 10.1515/med-2015-0021. eCollection 2015.
  24. Hansen AB, Moralez G, Romero SA, Gasho C, Tymko MM, Ainslie PN, Hofstätter F, Rainer SL, Lawley JS, Hearon Jr CM. Mechanisms of sympathetic restraint in human skeletal muscle during exercise: role of α-adrenergic and nonadrenergic mechanisms. American Journal of Physiology-Heart and Circulatory Physiology. 2020; 319(1):H192-202. doi: 10.1152/ajpheart.00208.2020. Epub 2020 Jun 5.
  25. Ahmadizad S, Amraei Z, Bassami M. Responses of Hemorheological Variables to Upper and Lower Body Interval Exercises in Overweight and Obese Individuals. Sport Physiology. 2019; 11(41):47-62. https://doi.org/10.22089/spj.2017.4166.1558
  26. Ebrahimi H, Ahmadizad S, Matin Homaei H, Javidi M. Response of blood pressure and heart rateto various protocols and different movements of resistance exercise. Ebnesina - IRIAF Health Administration. 2016; 17(4): 43-52. http://ebnesina.ajaums.ac.ir/article-1-307-en.html
  27. Ozaki H, Yasuda T, Ogasawara R, Sakamaki-Sunaga M, Naito H, Abe T. Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur. J. Appl. Physiol. 2013; 113(1):167-74. doi: 10.1007/s00421-012-2422-9. Epub 2012 May 23.
  28. Renzi CP, Tanaka H, Sugawara JU. Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc. 2010; 42(4):726. doi: 10.1249/MSS.0b013e3181bdb454.
  29. Morley WN, Ferth S, Debenham MI, Boston M, Power GA, Burr JF. Training response to 8 weeks of blood flow restricted training is not improved by preferentially altering tissue hypoxia or lactate accumulation when training to repetition failure. Applied Physiology, Nutrition, and Metabolism. 2021;46(10):1257-64. doi: 10.1139/apnm-2020-1056. Epub 2021 Apr 30.
  30. Singh P. Effects of a low intensity circuit resistance exercise session on selected hematological parameters of male college students. Int. J. Physiol. Nutr. Phys. Educ. 2018; 3(1): 308-310. https://www.journalofsports.com/pdf/2018/vol3issue1/PartF/3-1-100-945.pdf
  31. Fortunato AK, Pontes WM, De Souza DM, Prazeres JS, Marcucci-Barbosa LS, Santos JM, Veira ÉL, Bearzoti E, Pinto KM, Talvani A, Da Silva AN. Strength training session induces important changes on physiological, immunological, and inflammatory biomarkers. Journal of immunology research. 2018; 2018. doi.org/10.1155/2018/9675216.
  32. Marcucci-Barbosa LS, Martins-Junior FD, Lobo LF, de Morais MG, Aidar FJ, Vieira EL, Nunes-Silva A. The effects of strength training session with different types of muscle action on white blood cells counting and Th1/Th2 response. Sport Sciences for Health. 2020; 16(2):239-48. https://link.springer.com/article/10.1007/s11332-019-00597-3
  33. Ghanbari-Niaki A, Tayebi SM. Effects of a low intensity circuit resistance exercise session on some hematological parameters of male collage students. Annals of Applied Sport Science. 2013; 1(1):6-11. [Article in Farsi] http://aassjournal.com/article-1-48-en.html.
  34. Natale VM, Brenner IK, Moldoveanu AI, Vasiliou P, Shek P, Shephard RJ. Effects of three different types of exercise on blood leukocyte count during and following exercise. Sao Paulo Medical Journal. 2003;121:09-14.doi: 10.1590/s1516-31802003000100003.
  35. Mousavi T and Abdullahi M. Exercise and white blood cells: number, distribution and cell proliferation. Chapter 3 of the book Immunology and Exercise. Imam Hussein University. Publications. 2003; 65-126.
  36. Cerqueira É, Marinho DA, Neiva HP, Lourenço O. Inflammatory effects of high and moderate intensity exercise—A systematic review. Frontiers in physiology. 2020:1550. doi: 10.3389/fphys.2019.01550. eCollection 2019.
  37. El-Sayed MS, El-Sayed ZA, Ahmadizad S. Exercise and training effects on blood haemostasis in healthand disease. Int. J. Sports Med. 2004; 34(3):181-200. doi: 10.2165/00007256-200434030-00004.
  38. Guardado I, Ureña B, Cardenosa A, Cardenosa M, Camacho G, Andrada R. Effects of strength training under hypoxic conditions on muscle performance, body composition and haematological variables. Biology of Sport. 2020; 37(2):121-9. doi: 10.5114/biolsport.2020.93037. Epub 2020 Feb 11.
  39. Yelmen N, Ozdemir S, Guner I, Toplan S, Sahin G, Yaman OM, Sipahi S.The effects of chronic long-term intermittent hypobaric hypoxia on blood rhe-ology parameters. Gen. Physiol. Biophys. 2011; 30: 389–395. doi: 10.4149/gpb_2011_04_389.
  40. Smith MM, Lucas AR, Hamlin RL, Devor ST. Associations among hemorheological factors and maximal oxygen consumption. Is there a role for blood viscosity in explaining athletic performance? Clin Hemorheol Microcirc. 2015; 60:347–362. doi: 10.3233/CH-131708.
  41. Zhang M, Li XM, Feng J, Xu GJ, Liu XB, Jiang H, Niu CY, Zhao ZG. Changes of blood viscosity and erythrocyte rheology in acute hypoxic hypoxia mices. Chin J Appl Physiol. 2012; 28: 454–457. https://pubmed.ncbi.nlm.nih.gov/23252303/
  42. Kindlovits R, Pereira AM, Sousa AC, Viana JL, Teixeira VH. Effects of Acute and Chronic Exercise in Hypoxia on Cardiovascular and Glycemic Parameters in Patients with Type 2 Diabetes: A Systematic Review. High Altitude Medicine & Biology. 2022. doi: 10.1089/ham.2022.0029.
  43. Turpin C, Catan A, Guerin-Dubourg A, Debussche X, Bravo SB, Álvarez E, Van Den Elsen J, Meilhac O, Rondeau P, Bourdon E. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS One. 2020; 15(7): e0235335. doi: 10.1371/journal.pone.0235335.
  44. Revin VV, Gromova NV, Revina ES, Samonova AY, Tychkov AY, Bochkareva SS, Moskovkin AA, Kuzmenko TP. The influence of oxidative stress and natural antioxidants on morphometric parameters of red blood cells, the hemoglobin oxygen binding capacity, and the activity of antioxidant enzymes. BioMed research international. 2019; 16;2019. doi: 10.1155/2019/2109269.
  45. Wilmore JH, Costill DL. Physiology of Sport and Exercise. 2nd ed. Indiana: Human Kinetics: 2005; 436-51. file:///C:/Users/rahaie/Downloads/67213913407.pdf
  46. Arazi H, Damirchi A, Mostafalo A. The effects of one bout of concurrent exercises (Endurance-Resistance) on hematological variables in male athletes. Exercise Physiology. 2009; 2:1-10.
  47. EL-Sayed MS, Nagia A, EL-Sayed Z. Hemorheology in exercise and training. Spots Medicine. 2005; 35:144-145. doi: 10.2165/00007256-200535080-00001.
  48. Brun JF, Connesb P, Varlet-Marie E. Alterations of blood rheology during and after exercise are both consequences and modifiers of bodys adaptation to muscular activity. Hemorhelogie et exercise physique Science & sports. 2007; 22(6): 251-266. doi.org/10.1016/j.scispo.2007.09.010
  49. Kiouptsi K, Gambaryan S, Walter E, Walter U, Jurk K, Reinhardt C. Hypoxia impairs agonist-induced integrin αIIbβ3 activation and platelet aggregation. Sci. Rep. 2017; 7(1): 7621. doi: 10.1038/s41598-017-07988-x.
  50. Ahmadizad S, El-Sayed MS. The acute effects of resistance exercise on the main determinants of blood rheology. Journal of sports sciences. 2005; 23(3):243-9. doi: 10.1080/02640410410001730151.
  51. Ahmadizad S, El-Sayed MS, MacLaren DP. Effects of water intake on the responses of haemorheological variables to resistance exercise. Clinical hemorheology and microcirculation. 2006; 35(1-2):317-27. https://pubmed.ncbi.nlm.nih.gov/16899951/
  52. Arabnejd N, Pourranjbar M, Rafie F. Effect of compound circular exercises on some of the blood parameters and immune system in non-athlete students. Sport Sciences for Health. 2019; 15(1):149-55. https://link.springer.com/article/10.1007/s11332-018-0504-8.
  53. Ramazanpour MR. The effect of a selected exercise program on aerobic fitness and its comparison in two groups of college men. Olympic. 2001; (9): 53-64. [Article in Farsi]
  54. Hazratian MR, TaheriChadorneshin H, Rashidi A. The effect of one bout of intensive judo exercise on select hematological and immunological parameters in adolescent elite judo athletes. Asian Journal of Sports Medicine. 2020; 11(2). doi: 10.5812/asjsm.101364
  55. Huey- June Wu, et al. Effects of 24 h ultra-marathon on biochemical and hematological parameters. Word J Gastroenterology. 2004; (18):2711-2714. doi: 10.3748/wjg.v10.i18.2711.