Document Type : Original Article

Authors

1 PhD Student in Animal Physiology, Dept. of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Dept. of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Introduction: Many investigations revealed that the inflammatory process induced by cerebral ischemia/reperfusion causes brain damages and cognitive impairments. On the other hand, Menaquinone-4 (MK-4) is one of the important vitamin K2 types that has anti-inflammatory effects. Therefore, in this study, we investigated the effect of administration of MK-4 on the level of gene expression of proinflammatory cytokines following global ischemia/reperfusion in the hippocampus of male Wistar rats. Materials and Methods: In this research, 20 adult male Wistar rats (250-300 g) were randomly selected in 5 experimental groups and studied: control (intact), sham (surgery without carotid artery occlusion), ischemia/reperfusion, ischemia/reperfusion + intraperitoneal (i.p.) injection of DMSO as MK-4 solvent, treatment (ischemia/reperfusion + i.p. injection of MK-4). For induction ischemic model, common carotid occlusion was performed for 20 minutes. In the treatment group i.p. injection of 200 mg/kg MK-4 was done 20 minutes after obstruction (immediately and 2 hours after reperfusion). 24 hours after reperfusion, mRNA expression level of TNF-α, IL-1β and IL-6 were assessed. Results: I.p. administration of MK-4 could significantly decrease mRNA expression level of TNF-α (p < 1.15), IL-1β and IL-6 (p < 0.001) induced by ischemia/reperfusion.
Conclusion: The findings of this study show that MK-4 administration following cerebral ischemia/reperfusion could diminish the expression of the pro-inflammatory factors in the hippocampus and maybe cause neuroprotective effects.
Received.

Keywords

Main Subjects

[1]. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. International review of cell and molecular biology. 2012;298:229.
[2]. Titomanlio L, Fernández-López D, Manganozzi L, Moretti R, Vexler ZS, Gressens P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: lessons from animal models. Pediatric neurology. 2015;52(6):566-84.
[3]. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. The Lancet Neurology. 2016;15(8):869-81.
[4]. Reis C, Akyol O, Araujo C, Huang L, Enkhjargal B, Malaguit J, Gospodarev V, Zhang JH. Pathophysiology and the monitoring methods for cardiac arrest associated brain injury. Int J Mol Sci. 2017 ;18(1):129.
[5]. Wu M-y, Yiang G-t, Liao W-T, Tsai AP-Y, Cheng Y-L, Cheng P-W, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry. 2018;46(4):1650-67.
[6]. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317.
[7]. Carden DL, Granger DN. Pathophysiology of ischaemia– reperfusion injury. The Journal of pathology. 2000;190(3):255-66.
[8]. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Annals of neurology. 2006;59(3):467-77.
[9]. Lo EH, Moskowitz MA, Jacobs TP. Exciting, Radical, Suicidal. Stroke. 2005;36(2):189-92.
[10]. Del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. Journal of Cerebral Blood Flow & Metabolism. 2003;23(8):879-94.
[11]. Tsai JP, Albers GW. Reperfusion versus recanalization: the winner is…. Am Heart Assoc; 2015.
[12]. Stoll G, Kleinschnitz C, Nieswandt B. Combating innate inflammation: a new paradigm for acute treatment of stroke? Ann N Y Acad Sci. 2010;1207:149-54.
[13]. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F. Neuronal damage in brain inflammation. Arch Neurol. 2007;64(2):185-9.
[14]. Kudabayeva M, Kisel A ,Chernysheva G, Smol’yakova V, Plotnikov M, Khodanovich M, editors. The increase in the number of astrocytes in the total cerebral ischemia model in rats. Journal of Physics: Conference Series; 2017: IOP Publishing.
[15]. Li M, Li Z, Yao Y, Jin W-N, Wood K ,Liu Q, et al. Astrocytederived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proceedings of the National Academy of Sciences. 2017;114(3):E396-E405.
[16]. Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XyR, et al. Tumor necrosis factor-α neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism. 2005;25(8):959-67.
[17]. Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD. Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluidpercussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag. 2012;2(4):167-75.
[18]. Boutin H, LeFeuvre R, Horai R, Asano M, Iwakura Y, Rothwell N. Role of IL-1α and IL-1β in ischemic brain damage. Journal of Neuroscience. 2001;21(15):5528-34.
[19]. Chamorro Á, Meisel A, Planas AM, Urra X, Van De Beek D, Veltkamp R. The immunology of acute stroke .Nature Reviews Neurology. 2012;8(7):401-10.
[20]. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice two possible routes for menaquinone-4 accumulation in cerebra of mice. Journal of Biological Chemistry. 2008;283(17):11270-9. [21]. Li J, Lin JC, Wang H, Peterson JW, Furie BC, Furie B, et al. Novel role of vitamin k in preventing oxidative injury to developing oligodendrocytes and neurons. Journal of Neuroscience. 2003;23(13):5816-26.
[22]. Onodera K, Zushida K, Kamei J. Antinociceptive effect of vitamin K2 (menatetrenone) in diabetic mice. Jpn J Pharmacol. 2001;85(3):335-7.
[23]. Onodera K, Shinoda H, Zushida K, Taki K, Kamei J. Antinociceptive effect induced by intraperitoneal administration of vitamin K2 (menatetrenone) in ICR mice. Life Sci. 2000;68(1):91-7.
[24]. Hajipoor F, Fereidoni M, Moghimi A. Effects of Intrathecal Administration of Vitamin K2 on Pain in the Tail Flick and Formalin Test in Rats. Journal of Mazandaran University of Medical Sciences. 2014;24(119):132-40.
[25]. Hajipoor F, Fereidoni M, Moghimi A. The Effect of Intrathecal Administration of Vitamin K2 on Inflammatory Rat Paw Edema Induced by Formalin. Journal of Shahid Sadoughi University of Medical Sciences. 2014;22(4):137986.
[26]. Sharifi Z-N, Abolhassani F, Zarrindast MR, Movassaghi S, Rahimian N, Hassanzadeh G. Effects of FK506 on hippocampal CA1 cells following transient global ischemia/reperfusion in Wistar rat. Stroke research and treatment. 2012;2012.
[27]. Albasser MM, Amin E, Lin T-CE, Iordanova MD, Aggleton JP. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behavioral Neuroscience. 2012;126(5):659.
[28]. Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, et al. Pterostilbene Attenuates Astrocytic Inflammation and Neuronal Oxidative Injury After Ischemia-Reperfusion by Inhibiting NF-kappaB Phosphorylation. Front Immunol. 2019;10:2408.
[29]. Sharifi Z-N, Abolhassani F, Zarrindast MR, Movassaghi S, Rahimian N, Hassanzadeh G. Effects of FK506 on hippocampal CA1 cells following transient global ischemiaیreperfusion in Wistar rat. Stroke research and treatment. 2012;2012.
[30]. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques. 2008;44(5):26-619.
[31]. Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, et al. Pterostilbene Attenuates Astrocytic Inflammation and Neuronal Oxidative Injury After Ischemia-Reperfusion by Inhibiting NF-kappaB Phosphorylation. Front Immunol. 2019;10:2408.
[32]. Zuo W, Zhang W ,Han N, Chen NH. Compound IMMH004, a novel coumarin derivative, protects against CA1 cell loss and spatial learning impairments resulting from transient global ischemia. CNS Neurosci Ther. 2015;21(3):280-8.
[33]. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques. 2008;44(5):619-26.
[34]. Anrather J, Iadecola C. Inflammation and Stroke: An Overview. Neurotherapeutics. 2016;13(4):661-70.
[35]. Wahul AB, Joshi PC, Kumar A, Chakravarty S. Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in Bilateral Common Carotid Arterial occlusion (BCCAo) mouse model. J Chem Neuroanat. 2018;92:1-15.
[36]. Fu SH, Zhang HF, Yang ZB, Li TB, Liu B, Lou Z, et al. Alda1 reduces cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(1):87-94.
[37]. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.
[38]. Wahul AB, Joshi PC, Kumar A, Chakravarty S. Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in Bilateral Common Carotid Arterial occlusion (BCCAo) mouse model. J Chem Neuroanat. 2018;92:1-15.
[39]. Mizushina Y, Maeda J, Irino Y, Nishida M, Nishiumi S, Kondo Y, et al. Effects of intermediates between vitamins K(2) and K(3) on mammalian DNA polymerase inhibition and anti-inflammatory activity. Int J Mol Sci. 2011;12(2):1 115 -22. .
[40]. Lee D, Park J, Yoon J, Kim MY, Choi HY, Kim H. Neuroprotective effects of Eleutherococcus senticosus bark on transient global cerebral ischemia in rats. J Ethnopharmacol. 2012;139(1):6-11.
[41]. Xing J, Lu J. HIF-1α activation attenuates IL-6 and TNF-α pathways in hippocampus of rats following transient global ischemia. Cellular Physiology and Biochemistry. 2016;39(2):511-20.
[42]. Lamanna JC, Kaiserman-Abramof I, Xu K, Daugherty S, Chávez JC, Pichiule P. Acute and Delayed Effects of
Transient Global Cerebral Ischemia on Rat Brain Capillary Endothelial Cells in Vivo. Ischemic Blood Flow in the Brain: Springer; 2001. p. 319-25.
[43]. Lamanna JC, Kaiserman-Abramof I, Xu K, Daugherty S, Chávez JC, Pichiule P. Acute and Delayed Effects of Transient Global Cerebral Ischemia on Rat Brain Capillary Endothelial Cells in Vivo. Ischemic Blood Flow in the Brain: Springer; 2001:319-25.
[44]. Mizushina Y, Maeda J, Irino Y, Nishida M, Nishiumi S, Kondo Y, et al. Effects of intermediates between vitamins K(2) and K(3) on mammalian DNA polymerase inhibition and anti-inflammatory activity. Int J Mol Sci. 2011;12(2):1115-32.
[45]. Wang C, Liu M, Pan Y, Bai B, Chen J. Global gene expression profile of cerebral ischemia-reperfusion injury in rat MCAO model. Oncotarget. 2017;8(43):74607.
[46]. Xing J, Lu J. HIF-1α activation attenuates IL-6 and TNF-α pathways in hippocampus of rats following transient global ischemia. Cellular Physiology and Biochemistry. 2016;39(2):511-20.
[47]. Wang Q, Dai P, Bao H, Liang P, Wang W, Xing A, et al. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats. Experimental and therapeutic medicine. 2017;13(1):263-8.
[48]. Hodges SJ, Pitsillides AA, Ytrebø LM, Soper R. Antiinflammatory actions of vitamin K. Vitamin K2: Vital for Health and Wellbeing. 2017:153.
[49]. Onodera K, Shinoda H, Zushida K, Taki K, Kamei J. Antinociceptive effect induced by intraperitoneal administration of vitamin K2 (menatetrenone) in ICR mice. Life sciences. 2000;68(1):91-7.
[50]. Pucaj K, Rasmussen H, Møller M, Preston T. Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. Toxicology mechanisms and methods. 2011;21(7):520-32.
[51]. Li T-F, Ma J, Han X-W, Jia Y-X, Yuan H-F, Shui S-F, et al. Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/mTOR pathway. Neurochemistry International. 2019:104496.
[52]. Ferland G. Vitamin K and the nervous system: an overview of its actions .Adv Nutr. 2012;3(2):204-12. [53]. Matsuda T, Kondo A, Tsunashima Y, Togari A. Inhibitory effect of vitamin K2 on interleukin-1β-stimulated proliferation of human osteoblasts. Biological and Pharmaceutical Bulletin. 2010;33(5):804-8