Document Type : Original Article

Authors

1 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences,University of Mazandaran, Babolsar,Iran

2 PhD of Exercise Physiology, Researcher of Research Center of Epidemiology Science and Technology, Medical Sciences Army University, Tehran, Iran,

3 Associate Professor, PhD of Exercise Physiology, Department of Exercise Physiology, aculty of Physical Education and Sport Sciences, University of Mazandaran, Mazandaran, Iran

4 Department of Basic Sciences,Faculty of Veterinary Medicine, University of Tabriz,Tabriz,Iran

Abstract

Background: This study investigated the effect of 3-weeks Taper in hypoxic environment on the ratio of Bax / Bcl2 and alveolar epithelial cells populations in the lung.
Materials and Methods: Thirty-five rats (4 weeks old, weighing 8 ± 72 g) were divided in five groups: control (6 weeks), training (6 weeks), hypoxia (3 weeks), hypoxia - taper (3 weeks) and control (9 weeks). Samples entered to the hypoxia after six weeks of interval training and lived there for 3 weeks. another group with exposure to hypoxic environment , implementation Taper technique.Bax/Bcl2 ratio of lung measured by immunohistochemistry and type II and type I pneumocytes population of pulmonary alveolar measured with stereologically.
Results: Bax/Bcl2 ratio and type II pneumocytes population Increased and type I pneumocytes population Decreased After six weeks high intensity interval training (P≤0.5).
Bax/Bcl2 ratio and type I pneumocytes population of hypoxia group decreased compared with training group (P≤0.5). three weeks taper in hypoxia group, Led to decrease of Bax/Bcl2 ratio , type II population pneumocytes and Increase of type I pneumocytes (P≤0.5).
Conclusion: It seems high intensity interval training and subsequent hypoxia can increase pulmonary alveolar apoptosis. also appears taper is a Efficient Method to decrease of apoptosis lung.

Keywords

Main Subjects

1.         Jain M, Sznajder JI. Effects of hypoxia on the alveolar epithelium. Proceedings of the American Thoracic Society. 2005;2(3):202-5.
2.         Podhorska-Okolow M, Dzlegiel P, Gomulkiewicz A, Kisiela D, Dolinska-Krajewska B, Jethon Z, et al. Exercise-induced apoptosis in rat kidney is mediated by both angiotensin II AT1 and AT2 receptors. Histology and histopathology. 2006;21(4/6):459.
3.         Fleury C, Mignotte B, Vayssière J-L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84(2-3):1.43-31.
4.         Kamal Ranjbar  FN, Afshin Nazari, Mohammad Reza Golami. Effect of 10 Weeks Aerobic Exercise Training on Left Ventricular Systolic Function, Caspase-3 Level and Infarction Size in Myocardial Infarction Rat. Journal of Knowledge & Health of Shahroud University of Medical Sciences. 2015;10(3):20-9.
5.         Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology. 2008;9(1):47-59.
6.         Barbas-Filho J, Ferreira M, Sesso A, Kairalla R, Carvalho C, Capelozzi V. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). Journal of clinical pathology. 2001;54(2):132-8.
7.         Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Applied physiology, nutrition, and metabolism. 2011;36(5):608-17.
8.         Krüger K, Mooren FC. Exercise-induced leukocyte apoptosis. Exercise immunology review. 2014;20.
9.         Rietjens G, Keizer H, Kuipers H, Saris W. A reduction in training volume and intensity for 21 days does not impair performance in cyclists. British Journal of Sports Medicine. 2001;35(6):431-4.
10.       Yadegari M, Riahi S, Mirdar S, Hamidiyan GH,  yousefpour M. Riyahi F. Immunohistochemical detection of apoptotic factors Bax and Bcl-2 in the lung alveoli, followed by six weeks of high intensity exercise training. Daneshvar Medicine. 2016;24(129):31-40.
11.       Yadegari M, Riahi S, Mirdar SH, hamidiaan Gh, Mosadegh P. investigatingof IL-6 level and lung inflammatory cells after performing high-intensity interval training and Exposure to hypoxic environment. SJE. 2016;18(3):26-36..
12.       Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007;35.516-495(3).
13.       Coutts AJ, Wallace L, Slattery K. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. International journal of sports medicine. 2007;28(02):125-34.
14.       Bosquet L, Montpetit J, Arvisais D, Mujika I. Effects of tapering on performance: a meta-analysis. Medicine & Science in Sports & Exercise. 2007;39(8):1358-65.
15.       Ogura Y, Naito H, Kurosaka M, Sugiura T, Junichiro A, Katamoto S. Sprint-interval training induces heat shock protein 72 in rat skeletal muscles. Journal of sports science & medicine. 2006;5(2):194.
16.       Armstrong R, Laughlin MH. Rat muscle blood flows during high-speed locomotion. Journal of Applied Physiology. 1985;59(4):1322-8.
17.       Yadegari M MS, Hamidian Gh. The effect of high-intensity interval training on lung parenchymal and non-parenchymal structural changes. Daneshvar Medicine Journal 2016;23(124):56-60.
18.       Mirdar S, Arabzadeh E, Hamidian G. Effects of two and three weeks of tapering on lower respiratory tract in the maturing rat. Koomesh. 2015;16(3).
19.       Ochs M, Mühlfeld C. Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2013;305(1):L15-L22.
20.       Hofman FM, Taylor CR. Immunohistochemistry. Current protocols in immunology. 2013;103(1):21.4. 1-.4. 6.
21.       Stuttfeld E, Ballmer‐Hofer K. Structure and function of VEGF receptors. IUBMB life. 2009;61(9):915-22.
22.       Di Cataldo S, Ficarra E, Acquaviva A, Macii E. Automated segmentation of tissue images for computerized IHC analysis. Computer methods and programs in biomedicine. 2010;100(1):1-15.
23.       Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Medicine & Science in Sports & Exercise. 2001;33(3):393-6.
24.       Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology. 2008;9(1):47.
25.       Krüger K, Agnischock S, Lechtermann A, Tiwari S, Mishra M, Pilat C, et al. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. Journal of Applied Physiology. 2011;110(5):1226-32.
26.       Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Medicine and science in sports and exercise. 2001;33(3):393-6.
27.       Arslan S, Erdem S, Sivri A, Hasçelik Z, Tan E. Exercise-induced apoptosis of rat skeletal muscle and the effect of meloxicam. Rheumatology international. 2002;21(4):133-6.
28.       Mason RJ. Biology of alveolar type II cells. Respirology. 2006;11(1).
29.       Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respiratory research. 2001;2(1):33.
30.       Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW, et al. Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of Applied Physiology. 2010;110(3):730-7.
31.       Greijer A, Van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. Journal of clinical pathology. 2004;57(10):1009-14.
32.       Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 2001;20(41):5779.
33.       Tramontano AF, Muniyappa R, Black AD, Blendea MC, Cohen I, Deng L, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochemical and biophysical research communications. 2003;308(4):990-4.
34.       Moudgil R, Michelakis ED, Archer SL. The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation. 2006;13(8):615-32.
35.       Lee S-D, Kuo W-W, Lin JA, Chu Y-F, Wang C-K, Yeh Y-L, et al. Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. International journal of cardiology. 2007;116(3):348-56.
36.       Korsmeyer S, Wei M, Saito M, Weiler S, Oh K, Schlesinger P. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell death and differentiation. 2000;7(12):1166.
37.       Anthony LM. Junquira’s Basic Histology Text and Atlas. Junqueira’s Basic Histology: Text and Atlas [Internet] McGraw-Hill. 2010.
38.       Farhangimaleki N, Zehsaz F, Tiidus PM. The effect of tapering period on plasma pro-inflammatory cytokine levels and performance in elite male cyclists. Journal of sports science & medicine. 2009;8(4):600.
39.       Souza KL, Gurgul-Convey E, Elsner M, Lenzen S. Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. Journal of Endocrinology. 2008;197(1):139-50.
40.       Papacosta E, Gleeson M. Effects of intensified training and taper on immune function. Revista Brasileira de Educação Física e Esporte. 2013;27(1):159-76.
41.       Izquierdo M, Ibañez J, Gonzalez-Badillo JJ, Ratamess NA. Detraining and tapering effects on hormonal responses and strength performance. Journal of Strength and Conditioning Research. 2007;21(3):768.
42.       Alway SE, Martyn JK, Ouyang J, Chaudhrai A, Murlasits ZS. Id2 expression during apoptosis and satellite cell activation in unloaded and loaded quail skeletal muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2003;284(2):R540-R9.