نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشجوی کارشناسی‌ارشد بافت شناسی، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران

3 دانشیار گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

زمینه و هدف  دیابت با سطح بالای گلوکز خون و نقص در تولید و عملکرد انسولین شناخته می‌شود. آلودگی مواد غذایی و محیط با سرب، سبب وخامت حال دیابتی‌ها می‌شود. این مطالعه، تأثیر تیامین بر هیستومورفولوژی روده کوچک موش‌های دیابتی ناشی از آلوکسان را بررسی کرد.
مواد و روشدر این پژوهش مداخله‌ای، تعداد 63 سر موش صحرایی نژاد ویستار، به‌صورت تصادفی در 9 گروه جای گرفتند. سه گروه از حیوانات به‌عنوان گروه کنترل (A)، گروه تیامین+ سرب 200 (H) و تیامین+ سرب 1000 (I) درنظر گرفته شدند. سرب بر حسب ppm و به‌صورت استات در آب مصرفی اضافه شد. سایر گروه‌ها، از طریق آلوکسان با دوزmg/kg 200 دیابتی شدند. موش‌های گروه B دیابتی تنها، گروه C موش‌های دیابتی دریافت‌کننده تیامین، گروه‌های D و E موش‌های دیابتی دریافت کننده سرب 200 و 1000 نام‌گذاری شدند. موش‌های گروه‌های F و G، تیامین و سرب به میزان ppm 200 و 1000 دریافت کردند. تیامین، روزانه، صفاقی و mg/kg70 استفاده شد. روز 29 ام بر نمونه‌های روده کوچک، هیستوتکنیک انجام شد و هیستومورفومتری آنها بررسی شد.
یافته‌هاهیستوموفومتری ساختار روده در موش‌های گروه دیابتی دریافت‌کننده سرب درمان‌‌نشده، در مقایسه با موش‌های سالم، افزایش معنی‌دار نشان داد. اما این پارامترها در موش‌های دیابتی دریافت‌کننده سرب که با تیامین درمان شدند نسبت به گروه کنترل، تفاوت معنی‌دار نشان نداد.
نتیجه‌گیری احتمالاً ترکیب آنتی‌اکسیدانی موجود در تیامین می‌تواند برخی از عوارض استات سرب را در بیماران دیابتی کاهش دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Histometric Study the Effects of Thiamin on the Structure of the Small Intestine in Induced Alloxan Diabetic Rats

نویسندگان [English]

  • Rahmat allah Fatahian Dehkordi 1
  • Kazem Norouzi 2
  • Saeed Habibian dehkordi 3

1 Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran

2 MSC of Histology, Faculty of Veterinary, University of Shahrekord, Shrskord, Iran

3 Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

چکیده [English]

Introduction: Diabetes is characterized by high blood glucose levels and defects in insulin production and function. Contamination of food and the environment with lead can worsen the condition of diabetics. This study investigated the effect of thiamine on the small intestinal histomorphology of alloxan-induced diabetic rats.
Material and Methods: In this interventional study, 63 Wistar rats were randomly divided into 9 groups. Three groups of animals were considered as control group (A), thiamine+lead 200 (H) and thiamine+lead 1000 (I). Lead in ppm and acetate form was added to drinking water. The other groups became diabetic via alloxan at a dose of 200 mg/kg. Group B: diabetic mice; Group C: Diabetic mice receiving thiamine; Groups D and E of diabetic mice receiving lead 200 and 1000 were named. Mice in groups F and G received 200 and 1000 ppm of thiamine and lead. Thiamine was used daily and peritoneal with 70 mg/kg dose. On the 29th day, histotechnique was performed on small intestine samples and their histomorphometry was examined.
Result: Histomophometry of intestinal structure in mice receiving untreated lead in diabetic group showed a significant increase compared to healthy mice. However, these parameters did not show a significant difference in lead-receiving diabetic rats treated with thiamine compared to the control group. The thiamin improved insulin secretion and reduced turbulence in villi´s of small intestine and improve size of muscular layer in digestive lumen.
Conclusion: Probably the antioxidant compound in the thiamin can reduce some complications of lead acetate in diabetic patients. 

کلیدواژه‌ها [English]

  • Thiamin
  • Lead acetate
  • Diabetes
  • Small intestine
  • Wistar rats
[1]. Maleki D, Locke GR, Camilleri M, Zinsmeister AR, Yawn BP, Leibson C, et al. Gastrointestinal tract symptoms among persons with diabetes mellitus in the community. Archives of internal medicine. 2000;160(18):2808-16.
[2]. Rothstein RD. Gastrointestinal motility disorders in diabetes mellitus. American Journal of Gastroenterology. 1990;85(7).
[3]. Jervis EL, Levin R. Anatomic adaptation of the alimentary tract of the rat to the hyperphagia of chronic alloxandiabetes. Nature. 1966;210(5034):391.
[4]. Nowak TV, Chey WW, Chang T-M, Weisbruch JP, Fouquet G. Effect of streptozotocin-induced diabetes mellitus on release of vasoactive intestinal polypeptide from rodent small intestine. Digestive diseases and sciences. 1995;40(4):828-36.
[5]. O’Reilly D, Long RG. Diabetes and the gastro-intestinal tract. Digestive Diseases. 1987;5(1):57-64. [6]. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40(4):405-12.
[7]. Hakim ZS, Patel BK, Goyal RK. Effects of chronic ramipril treatment in streptozotocin-induced diabetic rats. Indian journal of physiology and pharmacology. 1997;41:353-60.
[8]. Bonnefont R, Bastard J. JaudonMC, eta1. Consequences ofthe di· abetie status on the o: fidant/antioxidant balance. Diabetes Metab. 2000;26(3):163-76.
[9]. Afshari AT, Shirpoor A, Farshid A, Saadatian R, Rasmi Y, Saboory E, et al. The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats. Food Chemistry. 2007;101(1):148-53.
[10]. Ayoubi A, Valizadeh R, Omidi A, Abolfazli M. Protective Effects of Vitamin C (Ascorbic Acid) in Lead Acetate Exposed Diabetic Male Rats: Evaluation of Blood Biochemical Parameters and Testicular Histopathology. Istanbul Universitesi Veteriner Fakultesi Dergisi. 2015;41:84-91.
[11]. Johnson LR. Apoptosis in the gastrointestinal tract. Physiology of the Gastrointestinal Tract. 2006;1:345-74.
[12]. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto Ky, Matsuoka T-A, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxidants & redox signaling. 2007;9(3):355-66.
[13]. Shalan M, Mostafa M, Hassouna M, El-Nabi SH, El-Refaie A. Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology. 2005;206(1):115.
[14]. Saravanan R, Pari L. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC complementary and Alternative medicine. 2005;5(1):14.
[15]. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(5):816-23.
[16]. Masuda T, Toi Y, Bando H, Maekawa T, Takeda Y, Yamaguchi H. Structural identification of new curcumin dimers and their contribution to the antioxidant mechanism of curcumin. Journal of agricultural and food chemistry. 2002;50(9):2524-30.
[17]. Granneman JG, Stricker EM. Food intake and gastric emptying in rats with streptozotocin-induced diabetes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1984;247(6):R1054-R61.
[18]. Gandomani AK, Dehkordi RAF, Saeed M, Heidarnejad MJD. Evaluation of Serum Biochemical and
Histopathological Changes in Mice-Diabetic Kidney Followed by Simultaneous Injection of Nanoparticles of Zinc oxide and Thiamine. Evaluation. 2017;20(122):103-18.
[19]. Fauci A, Braunwald E, Isselbacher K, Wilson J, Martin J, Kasper D, et al. Harrison's Principles of Internal Medicine, (1998). Chapter 79: Vitamin deficiency and excess. 1998:480-7.
[20]. Gray A, McMillan DC, Wilson C, Williamson C, O’Reilly DSJ, Talwar D. The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty. Clinical Nutrition. 2004;23(5):1080-3.
[21]. Fischer KD, Dhanvantari S, Drucker DJ, Brubaker PL. Intestinal growth is associated with elevated levels of glucagon-like peptide 2 in diabetic rats. American Journal of Physiology-Endocrinology And Metabolism. 1997;273(4):E815-E20.
[22]. Jenkinson KM, Reid JJ. Effect of diabetes on relaxations to non‐ adrenergic, non‐ cholinergic nerve stimulation in longitudinal muscle of the rat gastric fundus. British journal of pharmacology. 1995;116(1):1551-6.
[23]. Ekundayo A, Lee C, Goodlad R. Gastrin and the growth of the gastrointestinal tract. Gut. 1995;36(2):203-8.
[24]. 24.Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J, Tritschler H, Rosen P, Halliwell B, et al. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997;40(6):64753.
[25]. Thulesen J, Hartmann B, Nielsen C, Holst JJ, Poulsen SS. Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat: effects of dietary fibre. Gut. 1999;45(5):672-8.
[26]. Cummings JH. Short chain fatty acids in the human colon. Gut. 1981;22(9):763.
[27]. Goodlad R, Chinery R, Lee C, Ghatei M, Bloom S, Wright N. Effects of short chain fatty acid infusion on the gastrointestinal epithelium of intravenously fed rats. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY. 1993;123:280-.
[28]. Koruda MJ, Rolandelli RH, Bliss DZ, Hastings J, Rombeau JL, Settle RG. Parenteral nutrition supplemented with short-chain fatty acids: effect on the small-bowel mucosa in normal rats. The American journal of clinical nutrition. 1990;51(4):685-9.
[29]. Shotton HR, Lincoln J. Diabetes only affects nitric oxide synthase-containing myenteric neurons that do not contain heme oxygenase 2. Brain research. 2006;1068(1):248-56.
[30]. Shohat J, Boner G. Role of lipids in the progression of renal disease in chronic renal failure: evidence from animal studies and pathogenesis. Israel journal of medical sciences. 1993;29(4):228-39. [31]. Mulhall BP, Ong JP, Younossi ZM. Non‐ alcoholic fatty liver disease: an overview. Journal of gastroenterology and hepatology. 2002;17(11):1136-43.
[32]. Torres M, Canal J, Perez C. Oxidative stress in normal and diabetic rats. Physiological research. 1999;48(3):203-8.
[33]. Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes. 2001;50(8):1927-37.
[34]. Oberley LW. Free radicals and diabetes. Free radical biology and medicine. 1988;5(2):113-24.