نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار ژنتیک پزشکی، گروه ژنتیک، دانشکدة پزشکی، دانشگاه علوم پزشکی شهید صدوقی یزد، یزد، ایران

2 کارشناس‌ارشد ژنتیک، مرکز تحقیقات نوآوری پزشکی، دانشگاه علوم پزشکی آزاد مشهد، مشهد، ایران

چکیده

اهداف سرطان پستان یکی از شایع‌ترین سرطان‌ها در جهان است که فاکتورهای مختلف ژنتیکی و اپی‌ژنتیکی بر آن مؤثر است. هورمون استروژن یکی از فاکتورهای مؤثر در بروز این سرطان به‌حساب می‌آید. این فاکتور منجر به ایجاد یک‌سری تغییرات و آغاز و پیشرفت سرطان پستان می‌شود.
مواد و روش‌ها در این تحقیق اساس مولکولی سرطان پستان، اثر فاکتورهای رشد، هورمون استروژن و گیرنده‌های استروژنی در وقوع سرطان، استفاده از داروهای آنتی‌استروژنی نظیر تاموکسیفن در درمان سرطان پستان و سازوکار‌های مقاومت در برابر این داروها بررسی شده است. از پایگاه‌های اطلاعاتی NCBI، PUBMED، Google Scholar و OVID MEDLINE در جمع‌آوری اطلاعات مورد نیاز استفاده شد.
یافته‌ها افزایش هورمون استروژن و گیرندة استروژنی به‌شدت در وقوع سرطان پستان مؤثر است. تاموکسیفن درمان کمکی استانداردی برای زنان با سرطان پستان از نوع گیرندة مثبت استروژن ( ER-positive) است، اما گاهی مقاومت ذاتی یا اکتسابی به اندوکراین درمانی وجود دارد.
نتیجه‌گیری داروهای آنتی‌استروژنی نظیر تاموکسیفن نقش مهاری در سرطان‌های پستان وابسته به استروژن دارد و مانع از اتصال استروژن به گیرندة خود در سرطان‌های ER+ می‌شود. دانستن اساس مولکولی سرطان پستان برای رسیدن به شیوة درمانی مؤثر و غلبه به مقاومت مهم است.

کلیدواژه‌ها

عنوان مقاله [English]

The Combination of Molecular Aspects of Breast Cancer with Hormone Therapy

نویسندگان [English]

  • Mahta Mazaheri Naeeni 1
  • Tayebeh Rabbani 2

1 Associate Professor, Department of Genetics, Faculty of Medicine, Shahid Sadoughi Universityof Medical Sciences, Yazd, Iran

2 Laboratory Expert of Innovation Medical Research Center, Islamic Azad University, Branch of Mashad, Mashad, Iran

چکیده [English]

Background & Objectives: Breast cancer is one of the most common cancers in the world that is affected by various genetics, epigenetic and many other environmental factors. Estrogen is one of the risk factors for this cancer. This factor lead to genetic alterations and the beginning and promotion of breast cancer.
Materials & Methods: In this review, we provide information using databases of NCBI, PubMed, Google Scholar, and Ovid MEDLINE, about the molecular basis of breast cancer, the effect of estrogen hormone, and estrogen receptors on cancer incidence, the use of anti-estrogens such as Tamoxifen in treatment of breast cancer and mechanisms of resistant to these drugs.
Result: Anti-estrogens such as tamoxifen play an important role in treatment of estrogen-receptor positive breast cancers by preventing estrogen binding to its receptors in these tumors. Finding the molecular basis of breast cancer will help us to achieve effective treatment for breast cancer.
Conclusion: Increased estrogen and estrogen receptor highly influence the incidence of breast cancer. Tamoxifen is standard adjuvant therapy for women with ER-positive [+], but there is some intrinsic or acquired resistance to endocrine treatment that require further investigations.
 

کلیدواژه‌ها [English]

  • Breast Cancer
  • estrogen
  • hormone therapy
  • tamoxifen
[1] Brisken C. Hormonal control of alveolar development and its implications for breast carcinogenesis. Mammary Gland Biology Neoplasia, 2002; 7(1): 39-48.
[2] Hickey T, Robinson J, Carroll J, Tilley W. Minireview: The androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene. Molecular Endocrinology, 2012; 26(8): 1252-67.
[3] Polyak K. On the birth of breast cancer. Biochimica et Biophysica Acta (BBA). Review Cancer, 2001; 1552(1): 1-13.
[4] Jatoi I. Breast cancer adjuvant therapy: Time to consider its time-dependent effects. Clinical Oncology, 2011: 29.
[5] Bombonati1 A, Dennis CS. The molecular pathology of breast cancer progression. Pathology, 2011; 223: 307-17.
[6] University C. Breast cancer and environmental risk factors. Fact Sheet, 1997; 5: 5-10.
[7] Polyak K. Breast cancer: origins and evolution. Journal of Clinical Investegation, 2007; 117(11): 3155-63.
[8] Abbasi S. Estrogen receptor-beta gene polymorphism in women with breast cancer at the Imam Khomeini Hospital Complex, Iran. BMC Medical Genetic, 2010; 11: 109.
[9] Lichtenstein P, Holm N, Verkasalo P, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. England Journal of Medecine, 2000; 343(2): 78-85.
[10] Singletary S. Rating the risk factors for breast cancer. Annal Surgary, 2003; 237(4): 474-82.
[11] Ripperger T, Gadzicki D, Meindl A, Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eurpean Journal of Human Genetic, 2009; 17(6): 722-31.
[12] Dunn L, Demichele A. Genomic predictors of outcome and treatment response in breast cancer. Molecular Diagnosis Therapy, 2009; 13(2): 73-90.
[13] Brody L, Biesecker B. Breast cancer susceptibility genes: BRCA1 and BRCA2. Medicine, 1998; 77(3): 208-26.
[14] Lawson JS, Heng B. Viruses and breast cancer. Cancers, 2010; 2: 752-72.
[15] Hulka B, Moorman P. Breast cancer: hormones and other risk factors. Maturitas, 2001; 38(1): 103-13.
[16] Gruber C, Tschugguel W, Schneeberger C, Huber J. Production and actions of estrogens. New England Journal of Medecin, 2002; 346: 340-52.
[17] Fu Y, Lian Y, Kim K, Zhang L, Hindle A, Brody F, et al. BP1 homeoprotein enhances metastatic potential in ER-negative breast cancer. Journal of Cancer, 2010; 1: 54-62.
[18] Mazaheri M. Molecular basis of anti-hormonal treatment and resistance in breast cancer Université de Toulouse, Université Toulouse III-Paul Sabatier; 2009.
[19] Buzdar A, Hortobagyi G. Update on endocrine therapy for breast cancer. Clinical Cancer Research, 1998; 4: 527-34.
[20] Yager J, Davidson N. Estrogen carcinogenesis in breast cancer. 2006; 354: 270-8.
[21] Garcia-Closas M, Chanock S. Genetic susceptibility loci for breast cancer by estrogen receptor status. Clinical Cancer Research, 2008; 14(24): 8000-9.
[22] Mazaheri M. Molecular basis of anti-hormonal treatment and resistance in breast cancer: Université de Toulouse, Université Toulouse III-Paul Sabatier; 2009.
[23] Pearce S, Jordan V. The biological role of estrogen receptors (alpha) and (beta) in cancer. Critical Review of Oncology and Hematology, 2004; 50(1): 3-22.
[24] Gronemeyer H. Transcription activation by estrogen and progesterone receptors. Ann Review Genetic, 1991; 25(1): 89-123.
[25] Monje P, Zanello S, Holick M, Boland R. Differential cellular localization of estrogen receptor (alpha) in uterine and mammary cells. Molecular and Cellular Endocrinology, 2001; 181: 117-29.
[26] Maruvada P, Baumann C, Hager G, Yen P. Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. Journal of  Biological Chemistry, 2003; 278: 12425-32.
[27] Reid G, Denger S, Kos M, Gannon F. Human estrogen receptor-a: regulation by synthesis, modification and degradation. Cellular and Molecular Life Science (CMLS), 2002; 59(5): 821-29.
[28] Saxena N, Sharma D. Epigenetic reactivation of estrogen receptor: promising tools for restoring response to endocrine therapy. Mol Cell Pharmacol, 2010; 2(5): 191-202.
[29] Kocanova S, Mazaheri M, Caze-Subra S, Bystricky K. Ligands specify estrogen receptor alpha nuclear localization and degradation. BMC Cell Biology, 2010; 11(1): 98-108.
[30] McKenna N, Lanz R, O'Malley B. Nuclear receptor coregulators. Cellular and Molecular Biology, 1999; 20: 321-44.
[31] Neeraj K, Saxena1, Sharma D. Epigenetic reactivation of estrogen receptor: Promising tools for restoring response to endocrine therapy. Molecular and Cellular Pharmacology, 2010; 2(5): 191-202.
[32] Buteau-Lozano H, Velasco G, Cristofari M, Balaguer P, Perrot-Applanat M. Xenoestrogens modulate vascular endothelial growth factor secretion in breast cancer cells through an estrogen receptor-dependent mechanism. Journal of Endocrinology, 2008; 196(2): 399-412.
[33] Fernandez S, Russo J. Estrogen and xenoestrogens in breast cancer. Toxicological Pathology, 2010; 38(1): 110-22.
[34] Beatson G. The treatment of inoperable cases of carcinoma of the mamma: suggestion for method of treatment, with illustrative case. The Lancet, 1896; 148(3802): 104-7.
[35] El Saghir N, Tfayli A, Hatoum H, Nachef Z, Dinh P, Awada A. Treatment of meta static breast cancer: State-of-the-art, subtypes andperspectives. Critical Review  of Oncology and Hematology, 2011; 80(3): 433-49.
[36] Buzdar AU, Robertson JFR. Fulvestrant: Pharmacologic profile versus existing endocrine agents for the treatment of breast cancer. Annual of Pharmacotherapy,2006; 40(9): 1572-83.
[37] Ahmad A, Shahabuddin S, Sheikh S, Kale P, Krishnappa M, Rane R, et al. Endoxifen, a new cornerstone of breast cancer therapy: demonstration of safety, tolerability, and systemic bioavailability in healthy human subjects. Clinical Pharmacology Therapy, 2010; 88
[38] Love R, Desta Z, Flockhart D, Skaar T, Ogburn E, Ramamoorthy A, et al. CYP2D6 genotypes, endoxifen levels, and diseaserecurrence in 224 Filipino and Vietnamesewomen receiving adjuvant tamoxifen for operable breast cancer. Springer Plus, 2013; 2: 52-60.
[39] Ell P. The contribution of PET/CT to improved patient management. The British Journal of Radiology, 2014; 79(937): 32-6.
[40] Hertz D, McLeod H, Hoskins J. Pharmacogenetics of breast cancer therapies. Breast, 2009; 18: 59-63.
[41] Karn A, Jha AK, Shrestha S, Acharya B, Poudel S, Bhandari R. Tamoxifen for breast cancer. Journal of Nepal Medical Association, 2010; 49(177): 41-67.
[42] Howell A, DeFriend D, Blamey R, Robertson J, Walton P. Response to a specific antioestrogen (ICI 182780) in tamoxifen-resistant breast cancer. The Lancet. 1995; 345(8941): 29-30.
[43] Yao K, Lee E, Bentrem D, England G, Schafer J, O'Regan R. Antitumor action of physiological estradiol on tamoxifen-stimulated breast tumors grown in athymic mice. Clinical Cancer Research, 2000; 6(5): 2028-36.
[44] Ward A, Balwierz A, Zhang J, Küblbeck M, Pawitan Y, Hielscher T, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 2013; 32(9): 1173-82.
[45] Pathiraja T, Stearns V, Oesterreich S. Epigenetic regulation in estrogen receptor positive breast cancer--role in treatment response. Journal of Mammary Gland Biology and Neoplasia, 2010; 15(1): 35-47.
[46] Kristensen L, Nielsen H, Hansen L. Epigenetics and cancer treatment. Europen Journal of Pharmacology, 2009; 625(1-3): 131-42.
[47] Hayes C, Spink D, Spink B, Cao J, Walker N, Sutter T. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Procceding National Academy Science, 1996; 93(18): 9776-81.
[48] Clarke R, Liu M, Bouker Kea. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene, 2003; 22(47): 7316-39.
[49] Levenson A, Catherino W, Jordan V. Estrogenic activity is increased for an antiestrogen by a natural mutation of the estrogen receptor. Journal of Steroid Biochemistry and Molecular Biology, 1997; 60(5-6): 261-8.
[50] Fox E, Davis R, Shupnik M. ER(beta) in breast cancer--Onlooker, passive player, or active protector? Steroids, 2008; 73(11): 1039-51.
[51] Anzick S, Kononen J, Walker Rea. AIB1, a steroid receptor coactivator amplified in breast and ovar cancer. Science, 1997; 277(5328): 965-8.
[52] Lavinsky R, Jepsen K, Heinzel Tea. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Procceding National Academy Science. 1998; 95(6): 2920-98.
[53] Zheng L, Zhao Y, Feng H, Liu Y. Endocrine resistance in breast cancer. Climacteric, 2014; 17(5): 522-8.
[54] Massarweh S, Schiff R. Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocrinal Rrelated Cancer, 2006; 13(1): 15-24.
[55] Zwart W, Griekspoor A, Berno V, Lakeman K, Jalink K, Mancini M. PKA-induced resistance to tamoxifen is associated with an altered orientation of ER towards co-activator SRC-1. The EMBO Journal, 2007; 26: 3534-44.