نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی هرمزگان، بندرعباس، ایران.

2 دانشجوی کارشناسی ارشد، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی قزوین، قزوین، ایران.

3 استادیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی قزوین، قزوین، ایران.

10.21859/sums-2306866

چکیده

اهداف مطالعه حاضر، به‌منظور بهینه‌سازی فرایند انعقاد و لخته‌سازی به‌وسیله کلرورکلسیم و سولفات‌فریک در تصفیه آب‌صابون صنعتی به روش سطح پاسخ انجام شد.
مواد و روش ها با استفاده از دو منعقدکننده کلرورکلسیم و سولفات‌فریک، بازده فرایند انعقاد و لخته‌سازی در حذف اکسیژن لازم شیمیایی (COD) و کدورت و میزان آزادشدن روغن بررسی شد. برای بهینه‌سازی شاخص‌های بهره‌برداری از فرایند، شامل pH و مقدار مصرف ماده منعقدکننده، طرح مرکب مرکزی و روش سطح پاسخ به‌کاررفت. برای محاسبه سه متغیر پاسخ، شامل COD و کدورت و روغن آزادشده، از الگوی درجه دوم استفاده شد.
یافته ها نتایج نشان داد که شرایط بهینه در استفاده از کلرورکلسیم در فرایند انعقاد و لخته‌سازی برابر با مقدار 4 گرم در لیتر و pH برابر 5/3 با میزان حذف COD و کدورت و آزادشدن روغن به‌ترتیب برابر با 93 و 9/96درصد و 8/31 میلی‌لیتر و میزان مطلوب‌بودن برابر با 2/91درصد بود. در زمینه سولفات‌فریک، در شرایط بهینه غلظت 5/6 گرم در لیتر و pH برابر 5/4 با میزان حذف COD و کدورت و آزادشدن روغن به‌ترتیب 1/62 و 6/93درصد و 7/13میلی‌لیتر و میزان مطلوب‌بودن برابر با 91درصد تخمین زده شد.
نتیجه گیری استفاده از منعقدکننده کلرورکلسیم در تصفیه آب‌صابون صنعتی، بازده حذف خوبی در حذف شاخص‌های آلایندگی بررسی‌شده داشت و درمقایسه‌با منعقدکننده متداول، مقدار مصرف منعقدکننده تقریباً 35درصد کمتر بود؛ اما در زمینه بازده حذف آلاینده‌ها، بازده به‌مراتب بهتری داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Application of Response Surface Methodology (RSM) to Optimize Coagulation–flocculation Process for Treatment of Metal Working Fluids Using Calcium Chloride and Ferric Sulfate

نویسندگان [English]

  • Kavoos Dindarloo 1
  • Ali Arezoumand 2
  • Hamza Ali Jamali 3

1 Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

2 MSc. Student, Department of Environmental Health Engineering, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran.

3 Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran.

چکیده [English]

Objectives The current study aimed at optimizing the coagulation-flocculation process to treat metal working fluids (MVF) by calcium chloride and ferric sulfate using response surface methodology (RSM).
Methods The removal efficiencies of chemical oxygen demand (COD), turbidity, and the amount of released oil via coagulation process using calcium chloride and ferric sulfate as coagulants were studied. Central Composite Design (CCD) and RSM were used to optimize the operating variables including coagulant dosage and pH. Quadratic models were developed for the 3 responses of COD, turbidity, and released oil from MWF.
Results The results of the current study indicated that the optimum conditions were calcium chloride dosage of 4 g/L at pH 3.5. The COD, turbidity removal efficiency, and oil releasing from MWF were 93%, 96.9%, and 31.8 mL, respectively and the level of desirability was 91.2%. Optimum condition for ferric sulfate was 6.5 g/L at pH 4.5. The COD, turbidity removal efficiency, and oil releasing from MWF were 62.1%, 93.6% and 13.7 mL, respectively and the level of desirability was 91%.
Conclusion Coagulation-flocculation process using calcium chloride, compared with conventional coagulants such as ferric sulfate, was very effective on pollutants removal. Calcium chloride usage was 35% less than common coagulant while removal efficiency was greater.

کلیدواژه‌ها [English]

  • Metal Working Fluid
  • Coagulation- Flocculation
  • Calcium Chloride
  • Ferric Sulfate
  • Response Surface Methodology
Jagadevan S, Jayamurthy M, Dobson P, Thompson IP. A novel hybrid nano zerovalent iron initiated oxidation – Biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Research. 2012; 46(7):2395–404. doi: 10.1016/j.watres.2012.02.006
Moscoso F, Deive FJ, Villar P, Pena R, Herrero L, Longo MA, et al. Assessment of a process to degrade metal working fluids using Pseudomonas stutzeri CECT 930 and indigenous microbial consortia. Chemosphere. 2012; 86(4):420–6. doi: 10.1016/j.chemosphere.2011.10.012
Gilbert Y, Veillette M, Duchaine C. Metalworking fluids biodiversity characterization. Journal of Applied Microbiology. 2010; 108(2):437–49. doi: 10.1111/j.1365-2672.2009.04433.x
Lucas García JA, Grijalbo L, Ramos B, Fernández-Piñas F, Rodea-Palomares I, Gutierrez-Mañero FJ. Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere. 2013; 90(11):2654–61. doi: 10.1016/j.chemosphere.2012.11.042.
Grijalbo L, Fernandez-Pascual M, García-Seco D, Gutierrez-Mañero FJ, Lucas JA. Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants. Journal of Hazardous Materials. 2013; 260:220–30. doi: 10.1016/j.jhazmat.2013.05.026
Rodriguez-Verde I, Regueiro L, Pena R, Álvarez JA, Lema JM, Carballa M. Feasibility of spent metalworking fluids as co-substrate for anaerobic co-digestion. Bioresource Technology. 2014; 155:281–8. doi: 10.1016/j.biortech.2013.12.090
Kiani Feizabadi, GH, Mahvi, AM, Dehghani, MH, Nabizadeh, R, Barani, M. [Investigating efficiency of coagulants in removing heavy metals from composting plant leachate (Persian)]. Journal of Sabzevar University of Medical Sciences. 2015; 22(1):57-65 .
Tong K, Zhang Y, Chu PK. Evaluation of calcium chloride for synergistic demulsification of super heavy oil wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013; 419:46–52. doi: 10.1016/j.colsurfa.2012.11.047
Gutiérrez G, Lobo A, Benito JM, Coca J, Pazos C. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation. Journal of Hazardous Materials. 2011; 185(2-3):1569–74. doi: 10.1016/j.jhazmat.2010.10.088
Lin KYA, Yang H, Petit C, Hsu FK. Removing oil droplets from water using a copper-based metal organic frameworks. Chemical Engineering Journal. 2014; 249:293–301. doi: 10.1016/j.cej.2014.03.107
Mandal T, Maity S, Dasgupta D, Datta S. Advanced oxidation process and biotreatment: Their roles in combined industrial wastewater treatment. Desalination. 2010; 250(1):87–94. doi: 10.1016/j.desal.2009.04.012
Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: Process and product optimization using designed experiments. Philadelphia: John Wiley & Sons; 2009.
Chibowski S, Grządka E, Patkowski J. Comparison of the influence of a kind of electrolyte and its ionic strength on the adsorption and electrokinetic properties of the interface: Polyacrylic acid/MnO2/electrolyte solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 326(3):191–203. doi: 10.1016/j.colsurfa.2008.05.038
Keowmaneechai E, McClements DJ. Effect of CaCl2 and KCl on physiochemical properties of model nutritional beverages based on whey protein stabilized oil-in-water emulsions. Journal of Food Science. 2002; 67(2):665–71. doi: 10.1111/j.1365-2621.2002.tb10657.x
C. W. Standard methods for the examination of water and wastewater. ?:?; 2012.
Ghanbari F, Mazaheri Tehrani A, Mahdipour F, Mirshafeean S, Moradi M, Sharifi Maleksari H. Evaluation of electrocoagulation processeffect in decolorization of dying wastewater by using Al/Fe & Al/Cu electrodes Quarterly (Persian)]. Journal of Sabzevar University of Medical Sciences. 2014; 20(5):716-25.
Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Abdul Rahman R, Hasan Kadhum AA. Application of Response Surface Methodology (RSM) for optimisation of COD, NH3–N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). Journal of Environmental Management. 2013; 121:179–90. doi: 10.1016/j.jenvman.2013.02.016.
Arslan-Alaton I, Akin A, Olmez-Hanci T. An optimization and modeling approach for H2O2/UV-C oxidation of a commercial non-ionic textile surfactant using central composite design. Journal of Chemical Technology & Biotechnology. 2009; 85(4): 435–582. doi: 10.1002/jctb.2315
Wu Y, Zhou S, Qin F, Ye X, Zheng K. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using Response Surface Methodology (RSM). Journal of Hazardous Materials. 2010; 180(1-3):456–65. doi: 10.1016/j.jhazmat.2010.04.052
Zhang W, Xiao P, Wang D. Central treatment of different emulsion wastewaters by an integrated process of physicochemically enhanced ultrafiltration and anaerobic–aerobic biofilm reactor. Bioresource Technology. 2014; 159:150–6. doi: 10.1016/j.biortech.2014.02.067
Liu X, Li XM, Yang Q, Yue X, Shen TT, Zheng W, et al. Landfill leachate pretreatment by coagulation–flocculation process using iron-based coagulants: Optimization by response surface methodology. Chemical Engineering Journal. 2012; 200-202:39–51. doi: 10.1016/j.cej.2012.06.012