نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، گروه مهندسی بهداشت محیط ، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران

2 استادیار، گروه مهندسی بهداشت محیط ، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

3 محقق، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

4 دانشجوی دکترا، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران

5 دانشجوی دکترا، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران.

6 کارشناس ارشد، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی قم، قم، ایران.

چکیده

اهداف فنل یک ترکیب سمی و سرطان‌زا در محیط زیست شناخته شده است و موجب ایجاد بو و طعم ناخوشایند در مخازن آبی می‌شود. در این مطالعه به مقایسه کارایی خاکستر سبوس برنج اصلاح‌شده و اصلاح‌نشده به عنوان جاذب ارزان‌قیمت در حذف فنل از محلول آبی پرداخته شده است.
مواد و روش ها این پژوهش مطالعه آزمایشگاهی و مداخله‌ای است. ابتدا سبوس برنج در دمای 450 درجه سانتی‌گراد کربونیزه (خاکستر) شد و برای بهبود ظرفیت جذب خاکستر سبوس از Cl NH4 استفاده شد، سپس به تأثیر متغیرها (pH، زمان تماس، غلظت اولیه فنل، دُز جاذب) در حذف فنل پرداخته شد.
یافته ها نتایج نشان داد میزان حذف فنل توسط خاکستر سبوس برنج اصلاح‌شده و اصلاح‌نشده به ترتیب 94/85 و 8/52درصد بود. فرایند جذب هر دو جاذب از مدل ایزوترم فروندلیچ با دقت 99/02≥R و مدل سینتیکی درجه دوم (99/02≥R) تبعیت می‌کند. حداکثر ظرفیت جذب بر مبنای مدل لانگمویر برای اصلاح‌شده 6/66 mg/g و اصلاح‌نشده 7/4 mg/g حاصل شد.
نتیجه گیری نتایج مطالعه نشان داد کارایی خاکستر سبوس برنج اصلاح‌شده نسبت به اصلاح‌نشده در حذف فنل کارایی بیشتری دارد که به‌نوبه خود سبب کاهش مصرف جاذب می‌شود. با توجه به قابل‌دسترس‌بودن سبوس برنج و سادگی اصلاح آن، این جاذب را می‌توان در صنعت آب‌وفاضلاب برای حذف ترکیبات فنلی به‌کار برد.

کلیدواژه‌ها

عنوان مقاله [English]

Efficiency Comparison of Conventional and Modified Rice Husk Ash in the Removal of Phenol from Aqueous Solutions: Isotherm, Kinetics and Thermodynamics Studies

نویسندگان [English]

  • Zahra Rezaei Gozal Abad 1
  • Ahmad Alah Abadi 2
  • Ahmad Hosseini-Bandegharaei 3
  • Ayoob Rastegar 4
  • Farzad Mohammadi 5
  • Shahram Nazari 6

1 Instructor, Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

2 Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

3 Resercher, Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

4 PhD. Student, Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

5 PhD. Student, Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

6 MSc., Department of Environmental Health Engineering, School of Public Health, Qom University of Medical Sciences, Qom, Iran.

چکیده [English]

Objectives Phenol is known as a toxic and carcinogen compound in the environment. It also produces unpleasant taste and odor in water reservoirs. In this study, the efficiencies of modified and conventional rice husk ashes as low-cost adsorbents were compared regarding phenol removal from aqueous solutions.
Methods This study is an interventional laboratory research in which, at first carbonized rice husk was prepared at a temperature of 450°C. Then, to improve rice husk ash adsorption capacity, NH4CL was used for its modification. Then, the effects of physiochemical factors (pH, contact time, phenol concentration and adsorbent dose) on phenol removal were studied.
Results Findings showed that the phenol removal by modified and conventional rice husk ash was 94.85% and 52.8%, respectively. The adsorption process for both adsorbents followed Freundlich isotherm (R2≥ 0. 99) and the pseudo-second order model (R2>0.99). Maximum adsorption capacity based on Langmuir model for the modified and conventional husk rice ashes were 66.6 mg/g and 4.7 mg/g, respectively.
Conclusion Results indicated that efficiency of modified husk rice ash was more than that of the conventional type in phenol removal, causing less adsorbent consuming in the industrial treatment plants. Therefore, because of its availability and easy modification, it can be used in water and wastewater technology for phenol removal.

کلیدواژه‌ها [English]

  • Rice husk ash
  • Chemical activation
  • phenol
  • adsorption
Ipek I, Kabay N, Yüksel M, Yüksel U. Application of adsorption–ultrafiltration hybrid method for removal of phenol from water by hypercrosslinked polymer adsorbents. Desalination. 2012; 306:24-28. doi: 10.1016/j.desal.2012.08.033
Senturka H, Ozdesa D, Gundogdua A. Removal of phenol from aqueous solutions by adsorption onto organ modified Tirebolubentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials. 2009; 172(1):353–362. doi: 10.1016/j.jhazmat.2009.07.019
Bayramoglu G, Gursel I, Tunali Y, Yüksel U. Biosorption of phenol and 2-chlorophenol by Funaliatrogii pellets. Journal of Bioresource Technology. 2009; 100(1):2685–691. doi: 10.1016/j.biortech.2008.12.042
Institute of Standards and Industrial Research of Iran. [Water–Packaged (bottled) drinking waters–specifications (Persian)]. Tehran: Institute of Standards and Industrial Research of Iran. Available from: http://vch.iums.ac.ir/uploads/6694.pdf
Pan B, Pan B, Zhang W, Zhang Q, Zhang Q, Zheng S. Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. Journal of Hazardous Materials. 2008; 157(2-3):293–99. doi: 10.1016/j.jhazmat.2007.12.102
Nadavala SK, Swayampakula K, Veere M, Abburi K. Bio sorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials. 2009; 162(1):482–89. doi: 10.1016/j.jhazmat.2008.05.070
Tan I, Ahmad AL, Hameed BH. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials. 2008; 154(1-3):337–46. doi: 10.1016/j.jhazmat.2007.10.031
Kumar NS, Subbaiah MV, Reddy AS, Krishnaiah A. Biosorption of phenolic compounds from aqueous solutions onto chitosan–abrusprecatorius blended beads. Journal of Chemical Technology & Biotechnology. 2009; 84(7):972-81. doi: 10.1002/jctb.2120
Patterson JW, Minear RA. Wastewater treatment technology. Michigan: Ann Arbor Science Publishers Inc; 1971.
Hou H, Smith DW. Advanced technologies in water and wastewater treatment. Canadian Journal of Civil Engineering. 2001; 28(1):49-66. doi: 10.1139/cjce-28-s1-49
Houari M, Hamdic B, Bouraso. Static sorption ofphenol and nitro phenol onto composite geomaterials based on montmorillonite, activated carbon and cement. Chemical Engineering Journal. 2014; 255:506-512. doi: 10.1016/j.cej.2014.06.065
Mahmoud DK, Salleh MA, Karim WA, Idris A, Abidin ZZ. Batch adsorption of basic dye using acid treated kenaffibre char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal. 2012; 181:449–57. doi: 10.1016/j.cej.2011.11.116
Tsyntsarski BG, Petrova BN, Budinova TK Petrov NV, Teodosiev DK. Removal of phenol from contaminated water by activated carbon, produced from waste coal material. Bulgarian Chemical Communications. 2014; 46(2):353–61.
El-Sayed GO, Yehia MM, Asaad AA. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resources & Industry. 2014; 7-8:66–75. doi: 10.1016/j.wri.2014.10.001
Angın D, Altintig E, Köse TE. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology. 2013; 148:542–49. doi: 10.1016/j.biortech.2013.08.164
Ucar S, Erdem M, Tay T, Karagoz S. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl activation. Applied Surface Science. 2009; 255(21):8890–96. doi: 10.1016/j.apsusc.2009.06.080
Gholami H, Gholami M, Gholizadeh A, Rastegar A. [Use of orange mesocarp ash for removal of direct black 22 dye from aqueous solution (Persian)]. Journal of North Khorasan University of Medical Sciences. 2012; 4(1):45-55.
Ranjana D, Talat M, Hasan SH. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. Journal of Hazardous Materials. 2009; 166(2-3):1050-059. doi: 10.1016/j.jhazmat.2008.12.013
Ponnusami V, Krithika V, Madhuram R, Srivastava SN. Biosorptionofreactive dye using acid-treated rice husk: Factorial design analysis. Journal of Hazardous Materials. 2007; 142(1-2):397–403. doi: 10.1016/j.jhazmat.2006.08.040
Zafar MN, Nadeem R, Hanif MA. Biosorption of nickel from protonated rice bran. Journal of Hazardous Materials. 2007; 143(1-2):478–485. doi: 10.1016/j.jhazmat.2006.09.055
Kermani M, Gholami M, Gholizade A, Farzadkia M, Esrafili A. [Effectiveness of rice husk ash in removal of phenolic compounds from aqueous solutions, equilibrium and kinetics studies (Persian)]. Iranian Journal of Health & Environment. 2012; 5(2):107-20.
Khosravi R, Fazlzadeh M, Samadi Z, Mostafavi H, Taghizadeh A, Dorri H. [Investigation of phenol adsorption from aqueous solution by carbonized service bark and modified carbonized service bark by ZnO (Persian)]. Journal of Health. 2013; 4(1):21-30.
American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, D.C.: American Public Health Association; 2005.
Agarwal B, Balomajumder C, Thakur BK, HuangY. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon Bhumica Agarwal. Chemical Engineering Journal. 2013; 228:28–35. doi: 10.1016/j.cej.2013.05.030
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. 1918; 40(9):1361–403. doi: 10.1021/ja02242a004
El-Naas M, Al-Zuhair S, Abu Alhaij M. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal. 2010; 162(3):997–1005. doi: 10.1016/j.cej.2010.07.007
Sarı A, Tuzen M, Uluözlü ÖD , Soylak M. Bio sorption of Pb (II) and Ni (II) from aqueous solution by lichen Cladoniafurcata biomass. Biochemical Engineering Journal. 2007; 37(2):151–58. doi: 10.1016/j.bej.2007.04.007
Suresh S, Srivastava VC, Mishra IM. Adsorptive removal of phenol from binary aqueous solution with aniline and4-nitrophenol by granula activated carbon. Chemical Engineering Journal. 2011; 171:997–1003. doi: 10.1016/j.cej.2011.04.050
Rahmani Sani A, Alahabadi A, Rezai Gezal Abad Z, Rastegar A, Khamirchi R. [Investigation of the effects of commercial activated carbon and NH4Cl-induced activated carbon on aniline removal from aqueous solutions: an equilibrium and kinetic study (Persian)]. Journal of Sabzevar University of Medical Sciences. 2015; 21(6):1090-102.
Gholizadeh A, Kermani M, Gholami M, Farzadkia M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. Journal of Environmental Health Science and Engineering. 2013; 29:1-10. doi: 10.1186/2052-336x-11-29
Lin S, Juang R. Adsorption of phenol and its derivates from water using synthetic resins and low-cost natural adsorbents: a review. Journal of Environmental Management. 2009; 90(3):1336–349. doi: 10.1016/j.jenvman.2008.09.003
Dash RR, Balomajumder C, Kumar A, Removal of cyanide from water and wastewater using granular activated carbon. Chemical Engineering Journal. 2009; 146(3):408–413. doi: 10.1016/j.cej.2008.06.021
Valente Nabais GM, Gomes Suhas JA, Carrott PJM ,Laginhas C, Roman S. Phenol removal onto novel activated carbons made from lingo cellulosic pre-cursors: Influence of surface properties. Journal of Hazardous Materials. 2009; 167(1-3):904–10. doi: 10.1016/j.jhazmat.2009.01.075
Kuo CY, Wu CH, Wu JY. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermody-namics parameters. Journal of Colloid and Interface Science. 2008; 327(2):308–15. doi: 10.1016/j.jcis.2008.08.038
Rodriguesa LA, Silva M, Mendesc M, Reis Coutinho A, Thim GP. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal. 2011; 174(1):49–57. doi: 10.1016/j.cej.2011.08.027
Tu W, Lin YP, Bai R. Removal of phenol in aqueous solutions by novel buoyant composite photo catalysts and the kinetics. Separation & Purification Technology. 2013; 115:180–89. doi: 10.1016/j.seppur.2013.05.009
Pirsaheb M, Rezaib Z, Mansouri AM, Rastegard A, Alahabadi A, Rahmani Sani A, et al. Preparation of the activated carbon from India shrub wood and their application for methylene blue removal: Modeling and optimization. Journal of Desalination & Water Treatment. 2015; 57(13):5888-902. doi: 10.1080/19443994.2015.1008581
Bayramoğlu G, Arıca MY. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of Hazardous Materials. 2008; 156(1-3):148-55. doi: 10.1016/j.jhazmat.2007.12.008
Din AT, Hameed BH, Ahmad AL. Batch adsorption of phenol onto physiochemical-activated coconut shell. Journal of Hazardous Materials. 2009; 161(2-3):1522-529. doi: 10.1016/j.jhazmat.2008.05.009
Chena YD, Huang MJ, Huang B, Chen XR. Mesoporous activated carbon from inherently potassium-rich pokeweed by in situ self-activation and its use for phenol removal. Journal of Analytical & Applied Pyrolysis. 2012; 98:159–65. doi: 10.1016/j.jaap.2012.09.011