نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

2 استادیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

3 دانشیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

4 کارشناس، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

5 کارشناس‌ارشد، گروه تغذیه و بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

10.21859/sums-2303504

چکیده

اهداف مسکّن‌ها ازجمله دیکلوفناک از داروهای پُرمصرف در پزشکی و دام‌پزشکی هستند که به‌علت ورود به منابع آبی و خطرات زیست‌محیطی حذف آن‌ها از آب‌وفاضلاب ضروری است. به‌دلیل عدم‌تجزیه زیستی، برای تصفیه این مسکّن‌ها از تصفیه پیشرفته نظیر روش جذب سطحی استفاده می‌شود. یکی از بهترین جاذب‌ها کربن فعال است. هدف از این مطالعه بررسی حذف آلاینده دیکلوفناک توسط کربن فعال‌شده با NH4CL است.
مواد و روش ها کربن فعال که از ضایعات کشاورزی تولید می‌شود، به NH4CL آغشته و در دمای 800 درجه سانتی‌گراد فعال شد. آزمایش‌ها در سیستم بسته توسط مگنت با 100 دور در دقیقه انجام شد. در این بررسی تأثیر متغیرهای دُز جاذب، غلظت دیکلوفناک، زمان تماس، pH و درجه حرارت بر حذف دیکلوفناک بررسی شد؛ سپس ایزوترم‌ها و ترمودینامیک جذب تجزیه‌وتحلیل شد. آنالیز دیکلوفناک با اسپکتر فتومتر مدل DR5000 در محدوده طول موج 275 نانومتر انجام گرفت.
یافته ها NAC (کربن فعال‌شده با NH4CL) تولیدشده سطح مخصوص 1029 مترمربع بر گرم و متوسط حجم روزنه‌های 46/2 نانومتر داشت و توانست در غلظت 8/0 گرم بر لیتر کربن، به میزان 81درصد از دیکلوفناک 50 میلی‌گرم در لیتر را در pH بهینه 6 و زمان 10 دقیقه حذف کند. آزمایش‌های تعادل جذب نشان داد که جذب دیکلوفناک بر روی NAC از مدل لانگ‌مویر تبعیت می‌کند و ماکزیمم ظرفیت جذب دیکلوفناک روی NAC ، 5/212 میلی‌گرم بر گرم است. ترمودینامیک جذب دیکلوفناک روی NAC نشان می‌دهد که در غلظت 50 میلی‌گرم در لیتر دیکلوفناک و دیگر شرایط بهینه، با افزایش دما از 10 به 40 درجه سانتی‌گراد میزان حذف دیکلوفناک از 73درصد به 95درصد افزایش می‌یابد.
نتیجه گیری کربن NAC می‌تواند به‌عنوان جاذبی مناسب و ارزان‌قیمت برای حذف دیکلوفناک و دیگر ترکیبات دارویی از آب‌های آلوده و فاضلاب‌ها استفاده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Diclofenac Removal From Aqueous Solutions Using NH4Cl-Induced Activated Carbon

نویسندگان [English]

  • Mahnaz Torabi-Hokmabadi 1
  • Ahamd Alahabadi 2
  • Abolfazl Rahmani-Sani 3
  • Somayyeh Zarei-Tazarghi 1
  • Hamidreza Karimi-Sani 4
  • Mohamadreza Behrozikhah 5

1 BSc. Student, Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

2 Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

3 Associate Professor, Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

4 BSc., Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.

5 MSc., Department of Nutrition and Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.

چکیده [English]

Background Painkillers such as diclofenac are widely used in human medicine and veterinary medicine. Because of their excretion into water resources and subsequent environmental hazards, their removal from the waters and wastewaters is essential. Since, these drugs cannot undergo biodegradation, an advanced treatment such as adsorption method must be applied for their removal and one of the best adsorbents in this regard is activated carbon. This study aimed to investigate the removal of diclofenac contaminant by NH4Cl-induced activated carbon.
Materials & Methods Activated carbon produced from agricultural wastes was impregnated with ammonium chloride (NH4Cl) and activated at 800°C. The experiments were conducted in a closed system using a magnet stirrer at 100 rpm. In this investigation, the effects of several variables, namely adsorbent concentration, contact time, pH, and temperature, on the removal of diclofenac were evaluated. Then, isotherms and adsorption thermodynamic were explored. We used DR 5000 spectrophotometer model for drug analysis with the wavelength of 275 nm.
Results The produced NAC (NH4Cl-induced activated carbon), having the special surface of 1029 m2/g and pores volume of 2.46 nm, was able to remove 0.81% of diclofenac from a solution of 50 mg/L at the sorbent concentration of 0.8 mg/L, pH 6, in 20 minutes time. The equilibrium adsorption experiments showed that the absorption of diclofenac on NAC followed the Longmuir model and the absorption capacity was 212.5 mg/g. Using the diclofenac concentration of 50 mg/L and other optimal conditions, thermodynamic studies of diclofenac absorption on NAC showed that the amount of drug removal increased from 73% to 95% with increasing temperature from 10°C to 40°C.
Conclusion NAC can be used as a convenient and inexpensive adsorbent for the removal of diclofenac and other drug compounds from polluted waters and wastewaters.

کلیدواژه‌ها [English]

  • adsorption
  • activated carbon
  • Diclofenac
Sallmann AR. The history of diclofenac. American Journal of Medicine. 1986; 80(4):29-33. doi: 10.1016/0002-9343(86)90076-8
Laneuville O, Breuer DK, Dewitt DL, Hla T, Funk CD, Smith WL. Differeninhibition of human prostaglandin endoperoxide H synthases-1 and -2 by nonsteroidal anti-inflammatory drugs. Journal of Pharmacology and Experimental Therapeutics. 1994; 271(2):927–34. PMID: 7965814
Brogden RN, Heel RC, Pakes GE, Speight TM, Avery GS. Diclofenac sodium: a review of itspharmacological properties and therapeutic use in rheumatic diseases and pain of varying origin.Drugs. 1980; 20(1):24-48. doi: 10.2165/00003495-198020010-00002
Jick SS, Kaye JA, Jick H. Diclofenac and acute myocardial infarction in patients with no major risk factors. British Journal of Clinical Pharmacology. 2007; 64(5):662-67. doi: 10.1111/j.1365-2125.2007.02942.x
Cheraghali AM. Injectable diclofenac: a painful shot into Iran’shealth system. Social Science & Medicine. 2006; 63(6):1597-601. doi: 10.1016/j.socscimed.2006.05.013
Sayadi MH, Trivedy RK, Pathak RK. Pollution ofpharmaceutical in environment. Journal of Industrial Pollution Control. 2010; 26(1):89-94.
Derksen JG, Rijs GB, Jongbloed RH. Diffuse pollution of surface water by pharmaceutical products. Water Science and Technology. 2004; 49(3):213–21. PMID: 15053118
Jones OA, Voulvoulis N, Lester JN. Potential impact of pharmaceuticals on environmental health. Bulletin of the World Health Organization. 2003; 81(10):768-69.
Petrovic M, Gonzalez S, Barcelo D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends in Analytical Chemistry. 2003; 22(10):685–96. doi: 10.1016/S0165-9936(03)01105-1
Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, et al. Behavior ofpharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research. 2004; 38(12):2918-926. doi: 10.1016/j.watres.2004.03.029
Moussavi Gh, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical Engineering Journal. 2013; 217:119–28. doi: 10.1016/j.cej.2012.11.069
Lin SH, Juang RS. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. Journal of Environmental Management. 2009; 90(3):1336–349. doi: 10.1016/j.jenvman.2008.09.003
Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, et al. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresource Technology. 2008; 99(8):2938–346. doi: 10.1016/j.biortech.2007.06.027
Torres-Perez J, Gerente C, Andre Y. Sustainable activated carbons from agricultural residues dedicated to antibiotic removal by adsorption. Chinese Journal of Chemical Engineering. 2012; 20(3):524-29. doi: 10.1016/s1004-9541(11)60214-0
Moussavi Gh, Hosseini H, Alahabadi A. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4 Cl-induced activated carbon. Chemical Engineering Journal. 2013; 214:172-79. doi: 10.1016/j.cej.2012.10.034
Fu R, Liu L, Huang W, Sun P. Studies on the structure of activated carbon fibers activated by phosphoric acid. Journal of Applied Polymer Science. 2003; 87(14):2253-261. doi: 10.1002/app.11607
Ioannidou OA, Zabaniotou AA, Stavropoulos GG, Islam MA, Albanis TA. Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere. 2010; 80(11):1328-336. doi: 10.1016/j.chemosphere.2010.06.044
Moussavi Gh, Yaghmaeian K, Alahabadi A, Karimi HR. [Adsorption potential of the granular activated carbon for the removal of amoxicillin from water (Persian)]. Journal of Sabzevar University of Medical Sciences. 2013; 20(4):573-82.
Liu Y. New insights into pseudo-second-order kinetic equation for adsorption. Colloid Surface A. 2008; 320(1-3):275-78. doi: 10.1016/j.colsurfa.2008.01.032
Shaarani FW, Hameed BH. Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol. Chemical Engineering Journal. 2011; 169(1):180-85. doi: 10.1016/j.cej.2011.03.002
Hamadi NK, Chen XD, Farid MM, Lu MGQ. Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal. 2001; 84(2):95-105. doi: 10.1016/s1385-8947(01)00194-2
Kyzas GZ, Lazaridis NK, Deliyanni EA. Oxidation time effect of activated carbons for drug adsorption. Chemical Engineering Journal. 2013; 234:491-99. doi: 10.1016/j.cej.2013.06.024
Moussavi Gh, Khosravi R. Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: Parametric experiments, kinetics and equilibrium analysis. Journal of Hazardous Materials. 2010; 183(1-3):724-30. doi: 10.1016/j.jhazmat.2010.07.086
Moussavi Gh, Talebi S, Farrokhi M, Sabouti RM. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chemical Engineering Journal. 2011; 171(3):1159-169. doi: 10.1016/j.cej.2011.05.016
Zheng H, Han L, Ma H, Zheng Y, Zhang H, Liu D, et al. Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous Materials. 2008; 2(158):577-82. doi: 10.1016/j.jhazmat.2008.01.115
Ahmed MJ, Theydan SK. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. Journal of the Taiwan Institute of Chemical Engineers. 2014; 45(1):219–26. doi: 10.1016/j.jtice.2013.05.014