نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مرکز تحقیقات فناوریهای زیست محیطی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران.

2 دانشجوی دکترا، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی جندی‌شاپور اهواز، اهواز، ایران.

3 استادیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.

4 استادیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران.

10.21859/sums-2303479

چکیده

اهداف بسیاری از صنایع با تخلیه فاضلاب می‌توانند در کیفیت منابع آبی تأثیر بگذارند. صنایع نساجی یکی از مهم‌ترین منابع آلوده‌کننده آب است. فاضلاب‌های رنگی به‌خاطر سمی‌بودن مشکلات محیط‌زیستی بسیاری ایجاد می‌کنند. رنگ‌های اسیدی یکی از مهم‌ترین دسته‌بندی رنگ‌ها محسوب می‌شود. در این مطالعه از نانوپودر آلومینا و میکروپودر آلومینا برای جذب رنگ اسید رد 14 استفاده شده است.
مواد و روش ها این مطالعه سیستم‌بسته بود که در مقیاس آزمایشگاهی انجام گرفت. تأثیر pH محلول، غلظت جاذب و زمان تماس بر کارایی حذف بررسی شد. غلظت رنگ در نمونه­‌های مختلف با استفاده از اسپکتروفتومتر مدل UV/VIS Lambada 25 Perkin Elmer, Shelton اندازه‌­گیری شد. ایزوترم و سنتیک جذب با استفاده از مدل‌های مختلف بررسی و استفاده شد.
یافته ها نتایج مشخص کرد که کارایی حذف رنگ اسید رد 14 توسط میکروپودر آلومینا و نانوپودر آلومینا با افزایش زمان تماس میزان جذب در واحد جرم (qe) به­‌ترتیب به 19 و 35 میلی‌گرم در گرم برای هرکدام افزایش پیدا کرد و وقتی غلظت اولیه جاذب‌ها از 2/0 به 2/1 گرم در لیتر افزایش یافت، میزان جذب در واحد جرم (qe) میکروآلومینا و نانوآلومینا به ترتیب از 23 به 12 و از 47 به 39 میلی‌گرم در گرم کاهش یافت. با افزایش pH کارایی به‌ترتیب از 30 به 6 و از 60 به 15درصد کاهش یافت. نتایج حاصل از مطالعات سینتیکی نیز برای میکروآلومینا و نانوآلومینا مشخص کرد که جذب رنگ اسید رد 14 از معادله شبه‌درجه دوم (به ترتیب با R2 99/0 و 98/0) پیروی می‌­کند. یافته‌ها نشان داد جذب رنگ با میکروآلومینا و نانوآلومینا از مدل ایزوترمی لانگ‌مویر تطابق بهتری دارد (هردو 99/0).
نتیجه گیری براساس نتایج این مطالعه، نانوپودر آلومینا در pH اسیدی نسبت‌به میکروپودر آلومینا قادر به حذف رنگ اسید رد 14 از محیط‌­های آبی درحد مطلوبی است.

کلیدواژه‌ها

عنوان مقاله [English]

Removal of Acid Red 14 by Nano-Alumina and Micro-Alumina Powder From Aqueous Solution

نویسندگان [English]

  • Abdolkazem Neisi 1
  • Mehdi Vosoughi 2
  • Anvar Asadi 3
  • Mohammad Javad Mohammadi 2
  • Mohammad Shirmardi 2
  • Mehdi Fazlzadeh 4
  • Amir Zahedi 2

1 Assistant Professor, Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

2 PhD Candidate, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

3 Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.

4 Assistant Professor, Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran.

چکیده [English]

Background Many industries can pollute water quality due to their wastewater discharging into water resources. Textile industries are one of the main sources of water pollution. Due to their high toxicity, wastewaters containing dyes cause many environmental problems. Acidic dyes are one of the main classes of dyes. In this study, nano-alumina and micro-alumina powder have been used for the adsorption of acid red 14 dye.
Materials & Methods This study was carried out in the batch system in laboratory scale. Different parameters such as initial dye concentration, pH, and adsorbent dose were examined. Spectrophotometry (UV/VIS Lambda 25 Perkin Elmer, Shelton) was used to quantify the remaining dyes concentration. Adsorption isotherm and kinetic behaviors of adsorbent for acidic dye removal were studied and fitted to different models.
Results The result showed that with increasing the contact time, acid red 14 removal efficiency by micro-alumina and nano-alumina powder and amount of adsorption per mass unit (qe) increased to 18 and 40 mg/L, respectively, and when adsorbent dose increased from 0.2 to 1.2 g/L, qe decreased from 23 to 12 and 47 to 39, respectively. With increasing the pH value in examined range, the removal efficiency decreased from 30 to 6 and 60 to 15 for micro-alumina and nano-alumina powder, respectively. The results of the study of adsorption of acid red 14 by micro-alumina and nano-alumina powder revealed that its kinetics obeyed pseudo-second order (R2>0.99 and 0.98, respectively). The results of present study on adsorption of acid red 14 on micro-alumina and nano-alumina powder revealed that isotherm obeyed Langmuir adsorption (R2 >0.99 and 0.98, respectively).
Conclusion The present study showed that the nano-alumina rather than mciro-alumina can be a promising adsorbent for the removal of acidic dyes such as acid red 14.

کلیدواژه‌ها [English]

  • Acid red 14
  • Nano-alumina
  • Micro-alumina
  • Kinetics
  • adsorption
Dareyni F, Amini Mohammadiyeh SA, Zare Sani H, Saghi M. [Removal of acid black 1 dye from aqueous solution using nano-iron particles (Persian)]. Journal of Sabzevar University of Medical Sciences. 2014; 20(5):782-90.
Mok YS, Jo JO, Whitehead JC. Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water. Chemical Engineering Journal. 2008; 142(1):56-64. doi: 10.1016/j.cej.2007.11.012
Renganathan S, Thilagaraj WR, Miranda LR, Gautam P, Velan M. Accumulation of acid orange 7, acid red 18 and reactive black 5 by growing Schizophyllum commune. Bioresource Technology. 2006; 97(16):2189-193. doi: 10.1016/j.biortech.2005.09.018
Al-Momani F, Touraud E, Degorce-Dumas J, Roussy J, Thomas O. Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. Journal of Photochemistry and Photobiology A: Chemistry. 2002; 153(1-3):191-97. doi: 10.1016/s1010-6030(02)00298-8
Ji P, Zhang J, Chen F, Anpo M. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Applied Catalysis B: Environmental. 2009; 85(3-4):148-54. doi: 10.1016/j.apcatb.2008.07.004
Aspland JR. Textile dyeing and coloration. North Carolina: American Association of Textiles Chemists & Colorists Press; 1997.
Wang S. A comparative study of fenton and fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments. 2008; 76(3):714-20. doi: 10.1016/j.dyepig.2007.01.012
Shirmardi M, Mahvi A, Hashemzadeh B, Naeimabadi A, Hassani G, Niri M. The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean Journal of Chemical Engineering. 2013; 30(8):1603-608. doi: 10.1007/s11814-013-0080-1
Papić S, Koprivanac N, Lončarić Božić A, Meteš A. Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process. Dyes and Pigments. 2004; 62(3):291-98. doi: 10.1016/s0143-7208(03)00148-7
Dos Santos AB, Cervantes FJ, van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology. 2007; 98(12):2369-385. doi: 10.1016/j.biortech.2006.11.013
Leili M, Ramavandi B. [The efficiency evaluation of activated carbon prepared from date stones for removal of methylene blue dye from aqueous solutions (Persian)]. Journal of Sabzevar University of Medical Sciences. 2014; 21(3):502-13.
Lambert S, Graham N, Sollars C, Fowler G. Evaluation of inorganic adsorbents for the removal of problematic textile dyes and pesticides. Water Science and Technology. 1997; 36(2):173-80. doi: 10.1016/s0273-1223(97)00385-5
Malik P. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Journal of Hazardous Materials. 2004; 113(1-3):81-88. doi: 10.1016/j.jhazmat.2004.05.022
McKay G, Porter J, Prasad G. The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water, Air, and Soil Pollution. 1999; 114(3):423-38. doi: 10.1023/A:1005197308228
Janos̆ P, S̆edivý P, Rýznarová M, Grötschelová S. Sorption of basic and acid dyes from aqueous solutions onto oxihumolite. Chemosphere. 2005; 59(6):881-86. doi: 10.1016/j.chemosphere.2004.11.018
Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. Journal of Hazardous Materials. 2010; 181(1–3):836-44. doi: 10.1016/j.jhazmat.2010.05.089
Kumar E, Bhatnagar A, Kumar U, Sillanpää M. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies. Journal of Hazardous Materials. 2011; 186(2–3):1042-049. doi: 10.1016/j.jhazmat.2010.11.102
Li J, Shi Y, Cai Y, Mou S, Jiang G. Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant-coated nano/microsized alumina. Chemical Engineering Journal. 2008; 140(1–3):214-20. doi: 10.1016/j.cej.2007.09.037
Ehrampoush M, Ghanizadeh G, Ghaneian M. Equilibrium and kinetics study of reactive red 123 dye removal from aqueous solution by adsorption on eggshell. Iranian Journal of Environmental Health Science & Engineering. 2011; 8(2):101-08.
Niri MV, Shirmardi M, Asadi A, Golestani H, Naeimabadi A, Mohammadi M, et al. Erratum to reactive red 120 dye removal from aqueous solution by adsorption on nano-alumina. Journal of Water Chemistry and Technology. 2014; 36(4):203. doi: 10.3103/s1063455x14040092
Qu B, Zhou J, Xiang X, Zheng C, Zhao H, Zhou X. Adsorption behavior of Azo Dye CI Acid Red 14 in aqueous solution on surface soils. Journal of Environmental Sciences. 2008; 20(6):704-09. doi: 10.1016/s1001-0742(08)62116-6
Azizian S. Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science. 2004; 276(1):47-52. doi: 10.1016/j.jcis.2004.03.048
Hall K, Eagleton L, Acrivos A, Vermeulen T. Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals. 1966; 5(2):212-23. doi: 10.1021/i160018a011
Zazouli M, Nasseri S, Mahvi A, Gholami M, Mesdaghinia A, Younesian M. Retention of humic acid from water by nanofiltration membrane and influence of solution chemistry on membrane performance. Iranian Journal of Environmental Health Science & Engineering. 2008; 5(1):33-46.
Prakash Kumar B, Miranda LR, Velan M. Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust ( Hevea brasiliensis) using different activation methods. Journal of Hazardous Materials. 2005; 126(1):63-70. doi: 10.1016/j.jhazmat.2005.05.043
Shirmardi MK, Heidari Farsani M, Naeimabadi A, Vosughi Niri M, Jafari J. [Application of oxidized multiwall carbon nanotubes as a novel adsorbent for removal of Acid Red 18 dye from aqueous solution (Persian)]. Journal of North Khorasan University of Medical Sciences. 2012; 4(3):335-46.
Mckay G, Blair H, Gardner J. Adsorption of dyes on chitin. I. Equilibrium studies.Journal of Applied Polymer Science. 1982; 27(8):3043-57. doi: 10.1002/app.1982.070270827
Santhy K, Selvapathy P. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresource Technology. 2006; 97(11):1329-336. doi: 10.1016/j.biortech.2005.05.016
Niri MV, Mahvi AH, Alimohammadi M, Shirmardi M, Golastanifar H, Naeimabadi A, et al. Removal of natural organic matter (NOM) from aqueous solution by NaCl and surfactant-modified clinoptilolite. Journal of Water and Health. 2015; 13(2):394-405. doi: 10.2166/wh.2014.088