نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی بهداشت محیط، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران

2 دانشیار، گروه مهندسی بهداشت محیط دانشکده بهداشت دانشگاه علوم پزشکی سبزوار، سبزوار، ایران

3 استادیار، گروه مهندسی بهداشت محیط دانشکده بهداشت دانشگاه علوم پزشکی سبزوار، سبزوار، ایران

4 دانشجوی دکتری مهندسی بهداشت محیط، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران

چکیده

زمینه و هدف: امروزه فلزات سنگین و ترکیبات آلی مانند رنگ­ها جز فراوان و پرخطرترین آلاینده­های نوپدید هستند که به آب­های سطحی و زیرزمینی راه پیدا کرده­اند و سلامت انسان­ها را تهدید می­کنند. هدف از این مطالعه، بررسی میزان حذف رنگ راکتیو اورنج 3 آر و کروم در فرایند جذب مجزا و هم‌زمان به‌وسیله کربن فعال می­باشد.
مواد و روش‌ها: در این پژوهش از کربن چنار اصلاح شده با NH4Cl به‌منظور حذف آلاینده‌ها استفاده گردید و تاثیر متغیرهایی از جمله pH (2-9)، غلظت جاذب (5/0-1/0گرم بر لیتر)، غلظت آلاینده (mg/L100-5 ) و زمان تماس (40-2 دقیقه) در حذف رنگ و کروم (هم‌زمان و مجزا) توسط جاذب کربن فعال محاسبه گردید. سپس آزمایش‌های تعادل جذب انجام و ظرفیت جذب و مدل­های ایزوترم جذب فروندلیچ و لانگمویر و سینتیک واکنش­های آن بررسی شد.
یافته‌ها: نتایج این پژوهش نشان داد که کربن­ فعال درpH=4، غلظت 4/0 گرم بر لیتر جاذب در زمان تماس 15 دقیقه بهترین شرایط حذف برای هردو آلاینده رنگ و کروم را داراست. در شرایط بهینه کربن فعال توانست 72 درصد کروم و 84 درصد رنگ در حالت مجزا و 59 درصد کروم و 67 درصد رنگ در حالت هم‌زمان در محلول آلاینده با غلظت mg/L  25 را حذف کند. همچنین بررسی ایزوترم­های جذب مشخص کرد که آزمایش­ها با مدل فروندلیچ مطابقت بیش­تری دارد. سنتیک جذب از معادلات شبه مرتبه دوم تبعیت می­کند.
نتیجه‌گیری: طبق نتایج به‌دست‌آمده، این جاذب، عملکرد مناسبی در حذف مجزا و همزمان رنگ و کروم دارد و می­تواند به‌منظور تصفیه فاضلاب­ حاوی آلاینده­های آلی و معدنی به‌کار رود.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Simultaneous Removal of Reactive Orange 3R and Chromium from Aqueous Solutions Using Modified Carbon from Sycamore Wood

نویسندگان [English]

  • atefeh dehnabi 1
  • ahmad Allahabadi 2
  • MohammadHossein Saghi 3
  • Forough Riahimanesh 4

1 Master's degree Student, Department of Environmental Health Engineering, Sabzevar University of Medical Sciences, Sabzevar, Iran

2 Associate Professor, Department of Environmental Health Engineering, Sabzevar University of Medical Sciences, Sabzevar, Iran

3 Assistant Professor, Department of Environmental Health Engineering, Sabzevar University of Medical Sciences, Sabzevar, Iran

4 Ph.D Student, Department of Environmental Health Engineering, Sabzevar University of Medical Sciences, Sabzevar, Iran

چکیده [English]

Introduction: Today, heavy metals and organic compounds such as dyes are among the most dangerous pollutants that have entered surface and groundwater and threaten human health. The aim of this study was to investigate the removal of reactive orange 3R dye and chromium by adsorption separately and simultaneously activated carbon.
Materials and Methods: In this study, Sycamore carbon modified with NH4Cl was used to remove contaminants.  Effect of variables such as pH (2-9), adsorbent concentration (0.5-1-0 g/L), pollutant concentration (10-50 mg/L) and contact time (2-40 minutes) on dye and chromium removal (simultaneously and separately) were calculated. Freundlich and Langmuir adsorption isotherm models and kinetics were also investigated.
Results: The results of this study showed that activated carbon at pH = 4, 0.4 g/L adsorbent at 15 min contact time has the best removal conditions for both paint and chromium contaminants. Under optimal conditions, activated carbon was able to remove 72% of chromium and 84% of dye separately and 59% of chromium and 67% of dye simultaneously in solution at a concentration of 25 mg/L. The study of adsorption isotherms also showed that the experiments were more consistent with the Freundlich model.The absorption kinetics follows Pseudo-second order equations.
Conclusion: According to the results, this adsorbent has a good performance in separate and simultaneous removal of paint and chromium and can be used to treat wastewater containing organic and inorganic contaminants.

کلیدواژه‌ها [English]

  • Adsorption
  • Activated carbon
  • Chromium
  • Dye
  • Simultaneous removal
  1. Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere. 2021;264:128455.
  2. Li J, Xing X, Li J, Shi M, Lin A, Xu C, et al. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution. 2018;234:677-83.
  3. Lo S-F, Wang S-Y, Tsai M-J, Lin L-D. Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chemical Engineering Research and Design. 2012;90(9):1397-406.
  4. Ayisha Sidiqua M, Priya VS. Removal of yellow dye using composite binded adsorbent developed using natural clay and activated carbon from sapindus seed. Biocatalysis and Agricultural Biotechnology. 2021;33:101965.
  5. Islam MA, Ali I, Karim SMA, Hossain Firoz MS, Chowdhury A-N, Morton DW, et al. Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering. 2019;32:100911.
  6. Bharathi KS, Ramesh ST. Removal of dyes using agricultural waste as low-cost adsorbents: a review. Applied Water Science. 2013;3(4):773-90.
  7. Tayebi H-A, Ghanei M, Aghajani K, Zohrevandi M. Modeling of reactive orange 16 dye removal from aqueous media by mesoporous silica/ crosslinked polymer hybrid using RBF, MLP and GMDH neural network models. Journal of Molecular Structure. 2019;1178:514-23.
  8. Aghajani K, Tayebi H. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017;171:439-48.
  9. Aghajani K, Tayebi H-A. Synthesis of SBA-15/PAni mesoporous composite for adsorption of reactive dye from aqueous media: RBF and MLP networks predicting models. Fibers and Polymers. 2017;18(3):465-75.
  10. Nowruzi R, Heydari M, Javanbakht V. Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. International Journal of Biological Macromolecules. 2020;147:209-16.
  11. Javanbakht V, Alavi SA, Zilouei H. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology. 2013;69(9):1775-87.
  12. Highly Cited Researcher M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. The Chemical Engineering Journal. 2012.
  13. Derakhshan Z, Mahvi A, Faramarzian M, Dehghani M, Salari M, Fakhri Y, et al. Data on heavy metal concentration in common carp fish consumed in Shiraz, Iran. Data in Brief. 21;2018
  14. Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpää M. Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal. 2016; 52:283-445.
  15. Zhang H, Tang Y, Cai D, Liu X, Wang X, Huang Q, et al. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies. Journal of Hazardous Materials. 2010;181(1):8-801.
  16. Dehghani MH, Zarei A, Mesdaghinia A, Nabizadeh R, Alimohammadi M, Afsharnia M. Adsorption of Cr(VI) ions from aqueous systems using thermally sodium organo-bentonite biopolymer composite (TSOBC): response surface methodology, isotherm, kinetic and thermodynamic studies. DESALINATION AND WATER TREATMENT. 2017;85:298-312.
  17. Karimi A, Naghizadeh A, Biglari H, Peirovi Minaee R, Ghasemi A, Zarei A. Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research. 2020;27.
  18. Sun Y, Peng D, Li Y, Guo H, Zhang N, Wang H, et al. A robust prediction of U(VI) sorption on Fe3O4/activated carbon composites with surface complexation model. Environmental Research. 2020;185:109467.
  19. Liu R, Zhang W, Chen Y, Wang Y. Uranium (VI) adsorption by copper and copper/iron bimetallic central MOFs. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;587:124334.
  20. Basheer AO, Hanafiah MM, Alsaadi MA, Al-Douri Y, Al-Raad AA. Synthesis and optimization of high surface area mesoporous date palm fiber-based nanostructured powder activated carbon for aluminum removal. Chinese Journal of Chemical Engineering. 2021;32:472-84.
  21. Al-Harahsheh M, Batiha M, Kraishan S, Al-Zoubi H. Precipitation treatment of effluent acidic wastewater from phosphate-containing fertilizer industry: Characterization of solid and liquid products. Separation and Purification Technology. 2014;123:190–9.
  22. Shen J, Schäfer A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere. 2014;117:679-91.
  23. Yuan H, He Z. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review. Bioresource Technology. 2015;195:202-9.
  24. Adebisi A, Chowdhury Z, Alaba P. Equilibrium, Kinetic, and Thermodynamic Studies of Lead ion and Zinc ion Adsorption from Aqueous Solution onto Activated Carbon Prepared From Palm Oil Mill Effluent. Journal of Cleaner Production. 2017;148:958-68.
  25. Ncibi MC, Sillanpää M. Optimizing the removal of pharmaceutical drugs Carbamazepine and Dorzolamide from aqueous solutions using mesoporous activated carbons and multi-walled carbon nanotubes. Journal of Molecular Liquids. 2017;238:379-88.
  26. Roosta M, Ghaedi M, Daneshfar A, Darafarin S, Sahraei R, Purkait MK. Simultaneous ultrasound-assisted removal of sunset yellow and erythrosine by ZnS:Ni nanoparticles loaded on activated carbon: Optimization by central composite design. Ultrasonics Sonochemistry. 2014;21(4):1441-50.
  27. Giannakoudakis DA, Kyzas GZ, Avranas A, Lazaridis NK. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. Journal of Molecular Liquids. 2016;213:381-9.
  28. Nandeshwar SN, Mahakalakar AS, Gupta RR, Kyzas GZ. Green activated carbons from different waste materials for the removal of iron from real wastewater samples of Nag River, India. Journal of Molecular Liquids. 2016;216:688-92.
  29. Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management. 2012;102:148-64.
  30. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical Engineering Journal. 2013;217:119-28.
  31. Biglari H, Afsharnia M, Javan N, Sajadi SA. Phenol Removal from Aqueous Solutions by Adsorption on Activated Carbon of Miswak’s Root Treated with KMnO4. Iran-J-Health-Sci. 2016;4(1):20-30.
  32. Dehghani MH, Hassani AH, Karri RR, Younesi B, Shayeghi M, Salari M, et al. Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling. Scientific Reports. 2021;11(1):11719.
  33. Afsharnia M. Sono-Electrocoagulation of Fresh Leachate from Municipal Solid Waste; Simultaneous Applying of Iron and Copper Electrodes. International Journal of Electrochemical Science. 2018;13:472-84.
  34. Hameed BH, Rahman AA. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials. 2008;160(2):576-81.
  35. Amran F, Zaini MAA. Valorization of Casuarina empty fruit-based activated carbons for dyes removal – Activators, isotherm, kinetics and thermodynamics. Surfaces and Interfaces. 2021;25:101277.
  36. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chemical Engineering Journal. 2011;168(1):77-85.
  37. Ahmed MJ, Dhedan SK. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilibria. 2012;317:9-14.
  38. Prabu D, Kumar PS, Rathi BS, Sathish S, Anand KV, Kumar JA, et al. Feasibility of magnetic nano adsorbent impregnated with activated carbon from animal bone waste: Application for the chromium (VI) removal. Environmental Research. 2022;203:111813.
  39. Nasseh N, Khosravi R, Rumman GA, Ghadirian M, Eslami H, Khoshnamvand M, et al. Adsorption of Cr(VI) ions onto powdered activated carbon synthesized from Peganum harmala seeds by ultrasonic waves activation. Environmental Technology & Innovation. 2021;21:101277.
  40. Alahabadi A, Hosseini-Bandegharaei A, Moussavi G, Amin B, Rastegar A, Karimi-Sani H, et al. Comparing adsorption properties of NH4Cl-modified activated carbon towards chlortetracycline antibiotic with those of commercial activated carbon. Journal of Molecular Liquids. 2017;232:367-81.
  41. Gharehkhani E. PDF] from bas.bg Investigation and optimization of reactive orange-3R dye surface absorption by nano-MMT/NZVI composite absorbent in a process of textile industry wastewater treatment. Bulg Chem Commun. 2016;48( Special ):211-6.
  42. Manirethan V, Balakrishnan RM. Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon. Environmental Technology & Innovation. 2020;20:101085.
  43. Salman JM, Njoku VO, Hameed BH. Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium. Chemical Engineering Journal. 2011;173(2):361-8.
  44. Misran E, Bani O, Situmeang EM, Purba AS. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alexandria Engineering Journal. 2021.