نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه زیست‌شناسی، دانشگاه آزاد اسلامی، واحد مشهد مشهد، ایران

2 استادیار، گروه زیست‌شناسی، دانشگاه آزاد اسلامی، واحد مشهد مشهد، ایران

3 استادیار، گروه زیست‌شناسی، دانشگاه آزاد اسلامی، واحد نیشابور، نیشابور، ایران

چکیده

زمینه و هدف: در حال حاضر، باکتری سودوموناس آئروژینوزا به دلیل مقاوم شدن به انواع آنتی‌بیوتیک‌ها مشکلات فراوانی را برای کنترل عفونت‌های بیمارستانی به‌وجود آورده است و پمپ‌های افلاکس MexAB-OprM نقش مهمی در ایجاد مقاومت سویه‌های سودوموناس آئروژینوزا به آنتی‌بیوتیک‌ها دارند. هدف این مطالعه، تعیین تأثیر ضدمیکروبی نانوذرات نقره و پروبیوتیک لاکتوباسیلوس پلانتاروم بر بیان ژن MexA  است.
مواد و روش‌ها: در این مطالعه توصیفی- مقطعی، 49 سویه در مدت 8 ماه، از 11 آزمایشگاه تشخیص طبی مشهد طی سال‌های ۱۳۹9-۱۳۹8 جمع‌آوری شدند. ارزیابی الگوی حساسیت آنتی‌بیوتیکی سویه‌ها، از روش انتشار دیسک براساس پروتکل CLSI استفاده شد. پس از تیماردهی باکتری‌های دارای مقاومت چند دارویی با مواد مهارکننده، از روش میکرودایلوشن و تکنیک Real time-PCR به‌ترتیب برای تعیین رقت اثربخش نانوذرات نقره و پروبیوتیک بر بیان ژن  MexA باکتری مولد آن استفاده شد.
یافته‌ها: تمام نمونه‌ها تأیید هویت شدند و تمام آنها به بیش از دو آنتی‌بیوتیک‌، مقاوم و واجد ژن  MexA بودند. کمترین غلظت مهار رشد در روش رقت در آگار برای نانوذرات نقره تا رقت 250 میکروگرم بر میلی‌لیتر و برای پروبیوتیک تا رقت 18 میکروگرم در میلی‌لیتر بود. نانوذرات نقره در مقایسه با پروبیوتیک تأثیر بیشتری بر مهار رشد باکتری داشتند و میزان این تأثیر نسبت به اثر ترکیبی پروبیوتیک و نانوذرات نقره کمتر می‌باشد (P>0.05).
نتیجه‌گیری: نانوذرات نقره و پروبیوتیک، فعالیت مهاری و آنتی‌باکتریال برای کاهش عملکرد پمپ افلاکس MexAB-OprM در باکتری سودوموناس آئروژینوزا دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Synergistic Effect of Silver Nanoparticles and Probiotic Lactobacillus Plantarum on the Expression of Mexa Component Gene of Pump Efflux System in Drug-Resistant Pseudomonas Aeruginosa Isolates

نویسندگان [English]

  • Fadhl Rajeh Swade 1
  • farahnaz molavi 2
  • samaneh dolatabadi 3

1 M.Sc. Student in Cellular and Molecular Sciences, Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran

2 Assistant Professor, Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran

3 Assistant Professor, Department of Biology, Nyshaboor Branch, Islamic Azad University, Mashhad, Iran

چکیده [English]

Introduction: At present, Pseudomonas aeruginosa bacteria has caused many problems to control nosocomial infections due to its resistance to various antibiotics and MexAB-OprM efflux pumps play an important role in making Pseudomonas aeruginosa strains resistant to antibiotics. The aim of this study was to determine the antimicrobial effect of silver nanoparticles and probiotic Lactobacillus plantarum on MexA gene expression.
Materials and Methods: In this descriptive cross-sectional study, 49 strains were collected from 8 medical diagnostic laboratories in Mashhad during the years 1398-1399 for 8 months. Evaluation of antibiotic susceptibility pattern of strains was using disk diffusion method based on CLSI protocol. After treatment of multidrug resistant bacteria with inhibitors, microdilution method and Real time-PCR technique were used to determine the effective dilution of silver nanoparticles and probiotics on the expression of MexA gene of its producing bacterium, respectively.
Results: All samples were identified and all of them were resistant to more than two antibiotics and had MexA gene. The minimum growth inhibition concentration in agar dilution method was up to 250 μg / ml for silver nanoparticles and up to 18 μg / ml for probiotics. Silver nanoparticles had a greater effect in inhibiting bacterial growth compared to probiotics and this effect is less than the combined effect of probiotics and silver nanoparticles (P> 0.05).
Conclusion: Silver and probiotic nanoparticles have inhibitory and antibacterial activity to reduce the performance of MexAB-OprM efflux pump in Pseudomonas aeruginosa. (P> 0.05).

کلیدواژه‌ها [English]

  • MexAB-OprM
  • Pseudomonas
  • nanoparticles
  • Multidrug resistance
  • Iran
  1. Grosjean M, Guénard S, Giraud C, Muller C, Plésiat P and Juarez P. Targeted Genome Reduction of Pseudomonas aeruginosa Strain PAO1 Led to the Development of Hypovirulent and Hypersusceptible rDNA Hosts. Front. Bioengeenering. Biotechnology. 2021; 9:640-650.
  2. Grainha T, Jorge P, Alves D, Lopes SP and Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans Communication in Coinfection Scenarios: Insights Through Network Analysis. Front. Cell. Infect. Microbiology. 2020; 10:550-559.
  3. Yu H, Chen S, Cao P. Synergistic bactericidal effects and mechanisms of low intensity ultrasound and antibiotics against bacteria. Ultrason Sonochem. 2012; 19 (3):377–382.
  4. Alvarez-Ortega C, Olivares J, and Martínez J. L. RND multidrug efflux pumps: what are they good for? Front. Microbiol.2013; 4(7):26-33.
  5. Dreier J, Ruggerone PJFim. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol. 2015; 6:66-714.
  6. Albadiri V, Molavi F, Tehranipoor M. 2021. The effect of silver nanoparticles on blaTEM gene expression in beta-lactamase-resistant samples in Escherichia coli. Biology journal of Microorganism. 2021;39(2):87-100.
  7. Kumar P, Love R, Hamlet S. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Front. Microbiol. 2020; 11:1074-85.
  8. Wang Y, Jiang Y, Deng Y, Yi C, Wang Y, Ding M, Liu J, Jin X, Shen L, He Y, Wu X, Chen X, Sun C, Zheng M, Zhang R, Ye H, An H and Wong A. Probiotic Supplements: Hope or Hype? Front. Microbiol. 2020; 11:160.
  9. Zhixiang Q, Dan Z, Yu Y, Hui Z, Daijie C. Antibacterial Activity of Lactobacillus Strains Isolated from Mongolian Yogurt against Gardnerella vaginalis", BioMed Research International, 2020; 86(18):354-361.
  10. Annear D, Black J, Govender S. Multilocus sequence typing of carbapenem resistant Pseudomonas aeruginosa isolated from patients presenting at port Elizabeth hospitals, south Africa. Afr J Infect Dis. 2017;11(2):68-74
  11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 28th ed. CLSI supplement M100S. CLSI, PA. 2018:38-40.
  12. Tang Y, Li B, Dai J, Dai J, Wang X, Si J, et al. Genotyping of pseudomonas aeruginosa type III secretion system using magnetic enrichment multiplex polymerase chain reaction and chemiluminescence. J Biomed Nanotechnol. 2016;12(4):762-9.
  13. Heera R, Sivachandran P, Chinni SV, Mason J, Croft L, Ravichandran M, et al. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis. BMC Res Notes. 2015;8(1):754-761.
  14. Cavallo JD, Fabre R, Leblanc F, Nicolas-Chanoine MH, Thabaut A; Groupe d'Etude de la Résistance de Pseudomonas aeruginosa aux Bêtalactamines. Antibiotic susceptibility and mechanisms of beta-lactam resistance in 1310 strains of pseudomonas aeruginosa: a French multicentre study (1996). J Antimicrob Chemother. 2000;46(1):133-6. 
  15. Diaz Iglesias Y, Van Bambeke F. Activity of Antibiotics against Pseudomonas aeruginosa in an in Vitro Model of Biofilms in the Context of Cystic Fibrosis: Influence of the Culture Medium. Antimicrob Agents Chemother. 2020; 24;64(4): 24-19.
  16. Acosta N, Waddell B, Heirali A, Somayaji R, Surette MG, Workentine ML, Rabin HR and Parkins MD. Cystic Fibrosis Patients Infected with Epidemic Pseudomonas aeruginosa Strains Have Unique Microbial Communities. Front. Cell. Infect. Microbiol. 2020: 10:173-189.
  17. Cigana C, Ranucci S, Rossi A, De Fino I, Melessike M, Bragonzi A. Antibiotic efficacy varies based on the infection model and treatment regimen for Pseudomonas aeruginosa. Eur Respir J. 2020;5;55(3):188-205.
  18. Ruiz-Roldán L, Rojo-Bezares B, de Toro, M. et al. Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Sci Rep. 2020; 10(1), 57-68.
  19. Glavier M, Puvanendran D, Salvador D. et al. Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nat Commun. 2020;11(1): 39-48.
  20. Oswaldo Gomez N, Tetard, Laurent Ouerdane A, Laffont L, Catherine- Brutesco, Ball G, Lobinski R, Yann Denis, Plésiat P, Llanes C, Arnoux P, Voulhoux R bioRxiv. 2020;5(13):92-111.
  21. Shahraki Zahedani S, Tahmasebi H, Jahantigh M, "Coexistence of Virulence Factors and Efflux Pump Genes in Clinical Isolates of Pseudomonas aeruginosa: Analysis of Biofilm-Forming Strains from Iran", International Journal of Microbiology. 2021;55(1):55-61. 
  22. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st perspectives in medicinal chemistry. 2014;6(1):17-24.
  23. Shander RM, Anil C Antimicrobial Suseptibility Patterns of pseudomonas aeroginosa clinical isolates at tertiary care hospital in kathmando, nepal. Asian J Pharm Clin Res. 2013;6(3): 235-238.
  24. Salimi chirani A, Dabiri H, Nikokar I, Ebrahim pour komleh M, Dousdar F, Goudarzi H, et al. Evaluation of type IV pilin sub groups in Pseudomonas aeruginosa isolated from environmental samples, cystic fibrosis and burn patients. Iran J Med Microbiol. 2014; 8 (3):1-7.
  25. Mokhtari A.R., Zahraei Salehi T., Amini K., Shahcheraghi F. Isolation Pseudomonas aeruginosa bacteria and genes integronclass 1 of subclinical mastitis in dairy cows in tehran. Veterinary Researchs Biological Products. 2016;29(2 ):111:37-44.
  26. Bageri O, Olad G R, Shahcheraghi F, Sorori zanjani R. Isolation and identification of strains of Imipenem-resistant Pseudomonas aeruginosa Strains Isolated in clinical samples from 4 major hospitals of tehran, using MIC method. sjimu. 2017; 24 (6) :159-168
  27. Tabatabaii R, Siasi E, Rafiei MoslehiMehr F. Isolation of bla_vim gene in Antibiotic resistant Pseudomonas aeruginosa from hospitals. New Cellularand Molecular Biotechnology Journal. 2018;8(29):97-106.
  28. Wahab S, Khan T, Adil M, Khan A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon. 2021;1;7(7):74-84
  29. Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol. 2021;11:665759.
  30. Plant AJ, Dunn A, Porter RJJEroa-it. Ceftolozane-tazobactam resistance induced in vivo during the treatment of MDR Pseudomonas aeruginosa pneumonia. Expert Rev Anti Infect Ther. 2018;16(5):367-8.
  31. Grosjean M, Guénard S, Giraud C, Muller C, Plésiat P and Juarez P, Targeted Genome Reduction of Pseudomonas aeruginosa Strain PAO1 Led to the Development of Hypovirulent and Hypersusceptible rDNA Hosts. Front. Bioeng. Biotechnol. 2021; 9(1):64-45.
  32. Zahedi bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari R, Esmailkhani A, Mardani dashti Y, Soleiman-Meigooni S, Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains, Microbial Pathogenesis. 2021; 15(3):89-104.
  33. Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol. 2021; 11(1):66-75.
  34. Kumarasinghe WCH, Silva M D A, Fernando,L, Palliyaguru PS, Jayawardena M, Shimomura SSN, Fernando TDCP, Gunasekara PM, Jayaweera A, "One-Pot Reducing Agent-Free Synthesis of Silver Nanoparticles/Nitrocellulose Composite Surface Coating with Antimicrobial and Antibiofilm Activities", BioMed Research International. 2021; 66(1);61-74.
  35. Ugwuanyi F.C., Ajayi A., Ojo D.A. et al. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob, 2020; 2(1): 11. -21.
  36. Hemeg HA. Nanomaterials for alternative antibacterial therapy. International journal of nanomedicine. 2017; 12:82-91.
  37. Lisa M. Stabryla, Kathryn A. Johnston, Nathan A. Diemler, Vaughn S. Cooper, Jill E. Millstone, Sarah-Jane Haig, Leanne M. Gilbertson. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nature Nanotechnology, 2021; 10(1):31-38.
  38. Jacouton E, Chain F, Sokol H, Langella P, Bermudez-Humaran LG. Probiotic Strain Lactobacillus Casei BL23 Prevents Colitis-Associated Colorectal Cancer. Frontiers in Immunology. 2017; 8(1):15-33.
  39. Dosunmu E, Chaudhari AA, Singh SR, Dennis VA, Pillai Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. International journal of nanomedicine. 2015; 10(1):4456.
  40. Izzi M, Sportelli MC, Tursellino L, Palazzo G, Picca RA, Cioffi N, López Lorente ÁI. Gold Nanoparticles Synthesis Using Stainless Steel as Solid Reductant: A Critical Overview. Nanomaterials. 2020; 10(4):622.
  41. Rashid A, Molavi F, Mahmoudzadeh H. The effect of silver nanoparticles on mecA gene expression in methicillin-resistant samples of Staphylococcus aureus. NCMBJ. 2020; 11 (41) :67-82
  42. Doudi M, Naghsh N, Heiedarpour A. The effect of silver nanoparticles on Gram-negative Bacilli Resistant to ExtendedSpectrum Β-Lactamase Enzymes. Medical Laboratory Journal.2011;50(2):44-51.
  43. Dosunmu E, Chaudhari AA, Singh SR, Dennis VA, Pillai Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. International journal of nanomedicine. 2015; 10(1):50-75.
  44. Lee JH, Kim YG, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor Microbiological research. 2014;169(12):888-96.
  45. Haney CE. Effects on Iron Nanoparticles on Pseudomonas Aeruginosa Biofilms: University of Dayton; 2011, 322PP.
  46. Sharif R, Amini K. Effect of Iron Oxide Nanoparticles and Probiotic Bifidobacterium bifidum on MexA Gene Expression in Drug Resistant Isolates of Pseudomonas aeruginosa. Research in Medicine. 2019; 43 (3) :118-123.
  47. Cheragia S, Rashidian E, Birjandi M, Mahmoodnia L. Antagonistic effect of isolated probiotic bacteria from natural sources against intestinal Escherichia coli pathotypes. Electronic physician. 2019;10(3):6534.
  48. Saderi H, Hoseini SS, Niakan M & Eini ME. Comparison of cefoxitin disk diffusion and pcr for meca gene methods for detection of methicillin resistant staphylococcus aureus. Daneshvar Medicine 2015; 22(114): 41-6[Article in Persian].
  49. Ershadian M, Arbab Soleimani N, Ajodani Far H, Vaezi Khakhki M R. The Co-aggregation effects of probiotic lactobacillus against some pathogenic bacteria. Iran J Med Microbiol. 2015; 9 (3) :14-22
  50. Asamoah Cioffi N, Torsi L, Ditaranto. Synthesis and characterization of zinc and copper oxide nanoparticles and their antibacteria activity Author links open overlay panel. 2020;7: 99-104
  51. Zendegani E, Dolatabadi S. The efficacy of imipenem conjugated with synthesized silver nanoparticles against Acinetobacter baumannii clinical isolates, Iran. Biol Trace Elem Res. 2019;6(1):1–11
  52. Shahbandeh M, Taati Moghadam M, Mirnejad R, Mirkalantari S, Mirzaei M, The Efficacy of AgNO3 Nanoparticles Alone and Conjugated with Imipenem for Combating Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Nanomedicine.2020; 15: 6905–6916.