نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی شهرکرد. ایران

2 استاد گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی شهرکرد، شهرکرد، ایران

3 دانشیار گروه انگلشناسی و قارچشناسی، دانشکده پزشکی، دانشگاه علوم پزشکی شهرکرد، شهرکرد، ایران

4 دانشیار گروه اپیدمیولوژی و آمار زیستی، دانشکده بهداشت، دانشگاه علوم پزشکی شهرکرد، شهرکرد، ایران

5 استاد ژنتیک، گروه ژنتیک و بیولوژی مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی شهرکرد، شهرکرد، ایران

6 کارشناس ارشد بیوتکنولوژی، مرکز تحقیقات سلولی و مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی شهرکرد، شهرکرد، ایران

7 کارشناس ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی شهرکرد، شهرکرد، ایران

چکیده

زمینه و هدف: فلزات سنگین به دلیل ماهیت سمی همانند برخی مواد آلی در محیط پاکسازی نمی‌شوند و دسته‌ای از آلاینده‌های پایدار و غیرقابل تجزیه بیولوژیکی را تشکیل می‌دهند. این عناصر در نتیجه فعالیت‌های طبیعی مانند فوران آتشفشان‌ها و فعالیت‌های انسانی مثل استخراج معادن، تولید پساب‌های صنعتی، فاضلاب‌های شهری و برخی از آفت کش‌ها وارد محیط شده و می‌توانند به زنجیره غذایی راه پیدا کنند.

مواد و روش ها: در این مطالعه باکتری‌های مقاوم به کروم (VI) از فاضلاب صنعتی مجتمع فولاد مبارکه اصفهان جداسازی شدند. سویه‌های جداسازی شده، شناسایی و میزان مقاومت آنها نسبت به کروم تعیین و از سویه‌ای که بالاترین مقاومت را به کروم نشان داد به منظور حذف زیستی کروم استفاده شد. روش تجزیه و تحلیل داده‌ها با استفاده از آمار توصیفی و واریانس یک‌طرفه یا ANOVA می‌باشد.

یافته ها: نتایج این مطالعه منجر به شناسایی پنج سویه مقاوم به فلز کروم شد، که باکتری Micrococcus luteus SEHD031RS به دلیل حداقل غلظت بازدارندگی 140 میلی گرم بر لیتر و حداقل غلظت کشندگی 152 میلی گرم بر لیتر، برترین سویه مقاوم به کروم شناخته شد. در این مطالعه بالاترین میزان حذف فلز کروم در 4=pH، غلظت 30 میلی گرم بر لیتر و مدت زمان 96 ساعت، 5/82 درصد حاصل شد.

نتیجه ‌گیری: نتایج حاصل از این مطالعه نشان می‌دهد سویه‌ی Micrococcus luteus SEHD031RS می‌تواند به عنوان یک میکروارگانیسم موثر در حذف کروم از فاضلاب‌های صنعتی و یا پاکسازی محیط استفاده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Biological Removal of Chromium (VI) Using the Isolated Bacteria from Industrial Wastewater of Mobarakeh Steel Complex in Isfahan

نویسندگان [English]

  • Ramezan Sadeghi 1
  • Mehraban Sadeghi 2
  • Rahman Abdizadeh 3
  • Morteza Sedehi 4
  • Morteza Hashemzadeh Chaleshtori 5
  • Shahrbanou Parchami Barjui 6
  • Mohammad Rasoul Asadi Amirabadi 7

1 PhD in Environmental Toxicology . Environmental Health Engineering Dept., Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran.

2 PhD in Environmental Health Engineering. Environmental Health Engineering Dept., Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran

3 Associate Professor, Parasitology Dept., Shahrekord University of Medical Sciences, Shahrekord, Iran

4 Associate Professor, Epidemiology and Biostatistics Dept., Shahrekord University of Medical Sciences, Shahrekord, Iran

5 Professor of Genetics Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran

6 Master of Biotechnology, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

7 Master of Environmental Health Engineering, Shahrekord University of Medical Sciences, Shahrekord, Iran

چکیده [English]

Backgrounds: Similar to some organic materials the heavy metals are not easily removed from the environment because of the toxic nature and form a class of stable and non-biodegradable pollutants. These elements enter the nature and the food chain as a result of natural activities such as eruptions of volcanoes and human activities such as mining, producing industrial and urban wastewaters and applying pesticides.

Materials and Methods: In this study, chrome (VI) -resistant bacteria were isolated from the industrial wastewater taken from Isfahan Mobarakeh Steel Complex. The isolated strains were identified and their resistance to chromium was determined and the strain with the highest resistance to chromium was used for its bioremediation.Data were analyzed using descriptive statistics and one way ANOVA.

Results: The results of this study led to the identification of five chrome resistant strains that the Micrococcus luteus SEHD031RS bacterium was detected as the best chrome resistant strain due to the minimum inhibitory concentration of 140 mgL-1 and minimum bactericidal concentration of 152 mgL-1. In this study, the highest chromium removal rate of 82.5% was obtained at pH 4, concentration of 30 mgL-1 and 96 hours.

Conclusion: The results of this study indicate that the Micrococcus luteus SEHD031RS strain can be used as an effective microorganism in removing chromium from industrial wastewater or environmental bioremediation.

کلیدواژه‌ها [English]

  • Industrial wastewater
  • Heavy metals
  • Chromium (VI)
  • Biological removal
  1. Elabbas S, Mandi L, Berrekhis F, Pons MN, Leclerc JP, Ouazzani N. Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble. Journal of environmental management. 2016;166:589-595.
  2. Fawzy MA, Issa AA. Bioremoval of heavy metals and nutrients from sewage plant byAnabaena oryzaeandCyanosarcina fontana. International Journal of Phytoremediation. 2015;(18)4:321-328.
  3. Hemambika B, Kannan VR. Intrinsic characteristics of Cr(6)(+)-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities. Applied biochemistry and biotechnology. 2012;167(6):1653-67.
  4. Kiran MG, Pakshirajan K, Das G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization. Journal of Hazardous Materials. 2017;324:62-70.
  5. Munoz AJ, Espinola F, Moya M, Ruiz E. Biosorption of Pb(II) Ions by Klebsiella sp. 3S1 Isolated from a Wastewater Treatment Plant: Kinetics and Mechanisms Studies. BioMed research international. 2015;2015:719060
  6. Ng YS, Sen Gupta B, Hashim MA. Performance Evaluation of Two-Stage Electrokinetic Washing as Soil Remediation Method for Lead Removal using Different Wash Solutions. Electrochimica Acta. 2014;147:9-18.
  7. Li H, Huang S, Zhang Y. Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals. Journal of Microbiology. 2016 ;54(9):602-10.
  8. Murugavelh S, Mohanty K. Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp. Chemical Engineering Journal. 2012;203:415-22.
  9. Gupta S, Babu BV. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: Equilibrium, kinetics, and regeneration studies. Journal of environmental management. 2009;90(10):3013-22.
  10. Park JH, Chon HT. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environmental science and pollution research international. 2016;23(12):11814-22.
  11. Qambrani NA, Hwang JH, Oh SE. Comparison of chromium III and VI toxicities in water using sulfur-oxidizing bacterial bioassays. Chemosphere. 2016;160:342-8.
  12. Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresource Technology. 2012;126:233-7.
  13. Şahin Y, Öztürk A. Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry. 2005;40(5):1895-901.
  14. Sun H, Brocato J, Costa M. Oral Chromium Exposure and Toxicity. Current environmental health reports. 2015;2(3):295-303.
  15. Wise SS, Holmes AL, Liou L, Adam RM, Wise JP, Sr. Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicology and applied pharmacology. 2016;296:54-60.
  16. Elahian F, Moghimi B, Dinmohammadi F, Ghamghami M, Hamidi M, Mirzaei SA. The Anticancer Agent Prodigiosin Is Not a Multidrug Resistance Protein Substrate. DNA and Cell Biology. 2013;32(3):90-7.
  17. .Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Indian journal of pharmacology. 2011;43(3):246-53.
  18. Kumar R, Singh R, Kumar N, Bishnoi K, Bishnoi NR. Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chemical Engineering Journal. 2009;146(3):401-7
  19. Qu Y, Zhang X, Xu J, Zhang W, Guo Y. Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Separation and Purification Technology. 2014;136:10-7.
  20. Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnology advances. 2008;26(3):266-91.
  21. Association APH Association AWW Federation WPC Federation WE. Standard methods for the examination of water and wastewater. 22th ed. Am Publ Health 2017; P.201-70.
  22. Haq F, Butt M, Ali H, Chaudhary HJ. Biosorption of cadmium and chromium from water by endophyticKocuria rhizophila: equilibrium and kinetic studies. Desalination and Water Treatment. 2015;57(42):19946-58.
  23. Holla G, Yeluri R, Munshi AK. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano silver base inorganic anti-microbial agentagainst streptococcus mutans. Contemp Clin Dent 2012 3: 288-93.doi: 10.4103/0976-237X.103620
  24. Ozdemir G. Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chemical Engineering Journal. 2004;102(3):249-53.
  25. Ayangbenro AS, Babalola OO. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International journal of environmental research and public health. 2017 ;14(1):94.
  26. Barakat MA. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry. 2011;4(4):361-77.
  27. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, et al. Bergey's Manual of Systematic Bacteriology: Springer Science & Business Media. 2011.
  28. Zeng X-x, Tang J-x, Liu X-d, Jiang P. Isolation, identification and characterization of cadmium-resistant Pseudomonas aeruginosa strain E1. Journal of Central South University of Technology. 2009;16(3):416-21.
  29. Elahian F, Moghimi B, Dinmohammadi F, Ghamghami M, Hamidi M, Mirzaei SA. The Anticancer Agent Prodigiosin Is Not a Multidrug Resistance Protein Substrate. DNA Cell Biol. 2013;32(3):90-7.
  30. .Savvaidis I, Hughes MN, Poole RK. Copper biosorption by Pseudomonas cepacia and other strains. World Journal of Microbiology and Biotechnology. 2003;19(2):117-21.
  31. Molazadeh P, Khanjani N, Rahimi MR, Nasiri A. Adsorption of Lead by Microalgae Chaetoceros Sp. and Chlorella Sp. from Aqueous Solution. Journal of Community Health Research. 2015;4(2):114-27.
  32. Nieto J, Fernandez-Castillo R, Marquez M, Ventosa A, Quesada E, Ruiz-Berraquero F. Survey of metal tolerance in moderately halophilic eubacteria. Applied and Environmental Microbiology. 1989; 55(9): 2385-90.
  33. Mubashar K, Faisal M. Uptake of toxic Cr (VI) by biomass of exo-polysaccharides producing bacterial strains. African Journal of Microbiology Research. 2012;6(13): 3329-36.
  34. Zouboulis AI, Loukidou MX, Matis KA. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry. 2004;39(8):909-16.
  35. Zahoor A, Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Sciences. 2009;21(6):814-20.
  36. Srivastava S, Thakur IS. Biosorption potency of Aspergillus niger for removal of chromium (VI). Current microbiology. 2006;53(3):232-7.
  37. Gavrilescu M. Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences. 2004;4(3):219-32.
  38. Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials. 2007;146(1-2):270- 7.