نوع مقاله : مروری

نویسندگان

1 استادیار، مرکز تحقیقات گیاهان دارویی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

2 استادیار، گروه فارماکولوژی، دانشکده داروسازی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

3 دانشیار، گروه فارماکولوژی، دانشکده داروسازی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران

چکیده

زمینه و هدف: دیابت یک بیماری متابولیک است که می‌تواند نوروپاتی، رتینوپاتی و نفروپاتی ایجاد کند. با توجه به نقش حیاتی میتوکندری در متابولیسم هوازی، عملکرد این ارگانل به‌صورت قابل‌توجهی به پاتوفیزیولوژی دیابت مربوط می­باشد. علاوه بر این، میتوکندری گونه­های فعال اکسیژن را به‌عنوان یک نتیجه از اکسیداسیون سوخت تولید می­کند که شواهد نشان می­دهند این رادیکال­ها و استرس اکسیداتیو ناشی از آن­ها در پاتوفیزیولوژی دیابت و عوارض آن بسیار مهم هستند. محصولات نهایی گلیکاسیون پیشرفته علاوه بر ایجاد استرس اکسیداتیو، عملکرد میتوکندری را نیز مختل می­سازند و می­توان گفت که مسئول عمده عوارض دیابت مانند نفروپاتی، رتینوپاتی می­باشند.
مواد و روش‌ها: این مقاله مروری براساس یافته‌های حاصل از جستجو در پایگاه داده‌های Web of Science، Pubmed و Google Scholar بین سال‌های 1974 تا 2019 تهیه شد.
یافته‌ها: میتوکندری به دلیل نقش اساسی که در تولید انرژی و بقای سلول دارد، مختل شدن عملکرد صحیح آن سلول را به سمت استرس اکسیداتیو و آپوپتوزیس می­کشاند. از طرفی رادیکال­های آزاد و محصولات نهایی گلیکاسیون پیشرفته علاوه بر این که باعث اختلال در عملکرد میتوکندری می‌شود، به‌واسطه خصوصیات عملکردی مشخص خود، در دیابت و پاتوفیزیولوژی دیابت نقش مؤثری دارند.
نتیجه‌گیری: کاهش رادیکال­های آزاد، مهار محصولات نهایی گلیکاسیون پیشرفته و محافظت از عملکرد درست میتوکندری را می‌توان به‌عنوان یک استراتژی برای درمان و بهبود عوارض بیماری دیابت مورد توجه بیشتری قرار داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Relationship Among Mitochondria, Oxidative Stress and Advanced Glycation End Products in Diabetes

نویسندگان [English]

  • Mehdi Goudarzi 1
  • Hamidreza Khalili 2
  • Mohammadreza Rashidi Nooshabadi 2
  • Alireza Malayeri 3

1 Assistant professor, Medicinal Plant Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran

2 Assistant professor, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran

3 Associate professor, Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran

چکیده [English]

Introduction: Diabetes is a metabolic disease that can cause neuropathy, retinopathy, and nephropathy. Considering the vital role of mitochondria in aerobic metabolism, its function is significantly related to the pathophysiology of diabetes. In addition, mitochondria produce reactive oxygen species (ROS) from organic fuel molecules during the process of oxidative phosphorylation; according to evidence, ROS and the oxidative stress caused by them are very important for the pathophysiology of diabetes and its complications.In addition to causing oxidative stress, advanced glycation end products (AGEs) impair mitochondrial function and are responsible for major complications of diabetes, such as nephropathy and retinopathy.
Materials and Methods: This review was written based on findings from a search of the Web of Science, PubMed and Google Scholar databases from 1974 to 2019.
Results: Mitochondria, due to their essential role in energy production and cell survival, lead to impaired cell function leading to oxidative stress and apoptosis. On the other hand, free radicals and AGEs due to their specific functional properties result in impairing mitochondrial function and play an important role in the pathophysiology of diabetes.
Conclusion Conclude that the reduction of free radicals, inhibition of AGEs, and protection of the proper function of mitochondria can be considered as the strategy to treat and improve the diabetes complications.

کلیدواژه‌ها [English]

  • Advanced glycation end products
  • Diabetes
  • Mitochondria
  • Oxidative stress
[1]. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care. 2013;36(Supplement 1):S67-S74.
[2]. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice. 2010; 87(1):4-14.
[3]. Tusié ML. Genetics of type 2 diabetes mellitus: genes implicated in early onset diabetes. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2000;52(3):296-305.
[4]. So W, Ng M, Lee S, Sanke T, Lee H, Chan J. Genetics of types 2 diabetes mellitus. Hong Kong Medical Journal. 2000;6(1):69-76.
[5]. Santorelli F, Sciacco M, Tanji K, Shanske S, Vu T, Golzi V, et al. Multiple mitochondrial DNA deletions in sporadic inclusion body myositis: a study of 56 patients. Annals of neurology. 1996;39(6):789-95.
[6]. Lodish H. Molecular cell biology: Macmillan; 2008.
[7]. Martin SD, McGee SL. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochimica et Biophysica Acta (BBA)-General Subjects. 2014;1840(4):1303-12.
[8]. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Experimental and molecular pathology. 2007;83(1):84-92.
[9]. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Current Biology. 2006;16(14):R551-R60.
[10].                 Ernster L, Schatz G. Mitochondria: a historical review. The Journal of cell biology. 1981;91(3):227s-55s.
[11].                 Tahara EB, Navarete FD, Kowaltowski AJ. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radical Biology and Medicine. 2009;46(9):1283-97.
[12].                 Sies H. Oxidative stress: oxidants and antioxidants. Experimental physiology. 1997;82(2):291-5.
[13].                 Nordberg J, ARN´ER ESJ. Reactive oxygen species, antioxidants, and the mammalianthioredoxin system. Free Radical Biology & Medicine. 2001;31(11):1287-312.
[14].                 Kirkinezos IG, Moraes CT, editors. Reactive oxygen species and mitochondrial diseases. Seminars in cell & developmental biology; 2001: Elsevier.
[15].                 Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis. PloS one. 2010;5(7):e11707.
[16].                 Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, et al. Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology. 2011;31(2):95-107.
[17].                 Houshmand M. Mitochondrial DNA mutations, pathogenicity and inheritance. Iranian Journal of Biotechnology. 2003;1(1):1-18.
[18].                 Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proceedings of the National academy of Sciences. 1980;77(11):6715-9.
[19].                 Rustin P, von Kleist-Retzow J-C, Vajo Z, Rotig A, Munnich A. For debate: defective mitochondria, free radicals, cell death, aging-reality or myth-ochondria? Mechanisms of ageing and development. 2000;114(3):201-6.
[20].                 Taanman J-W. The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1999;1410(2):103-23.
[21].                 Maechler P, Wollheim CB. Mitochondrial signals in glucose‐stimulated insulin secretion in the beta cell. The Journal of physiology. 2000;529(1):49-56.
[22].                 Nesari A, Mansouri MT, Khodayar MJ, Rezaei M. Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus. Nutritional neuroscience. 2019:1-11.
[23].                 Lu C-Y, Lee H-C, Fahn H-J, Wei Y-H. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1999;423(1-2):11-21.
[24].                 Ohkubo K, Yamano A, Nagashima M, Mori Y, Anzai K, Akehi Y, et al. Mitochondrial gene mutations in the tRNALeu (UUR) region and diabetes: prevalence and clinical phenotypes in Japan. Clinical chemistry. 2001;47(9):1641-8.
[25].                 Maassen JA. Mitochondrial diabetes: pathophysiology, clinical presentation, and genetic analysis. American journal of medical genetics. 2002;115(1):66-70.
[26].                 Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, et al. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature genetics. 1992;1(1):11.
[27].                 Maassen JA, M‘t Hart L, van Essen E, Heine RJ, Nijpels G, Tafrechi RSJ, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004;53(suppl 1):S103-S9.
[28].                 Katagiri H, Asano I, Ishihara H, Inukai K, Anai M, Yazaki Y, et al. Mitochondrial diabetes mellitus: prevalence and clinical characterization of diabetes due to mitochondrial tRNA Leu (UUR) gene mutation in Japanese patients. Diabetologia. 1994;37(5):504-10.
[29].                 Kadowaki T, Kadowaki H, Mori Y, Tobe K, Sakuta R, Suzuki Y, et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. New England Journal of Medicine. 1994;330(14):962-8.
[30].                 Maassen J, t Hart L, Janssen G, Reiling E, Romijn J, Lemkes H. Mitochondrial diabetes and its lessons for common Type 2 diabetes. Biochemical Society Transactions. 2006;34(5):819-23.
[31].                 Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004;53(suppl 1:S110-S8).
[32].                 Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxidants & redox signaling. 2010;12(4):537-77.
[33].                 Marinari UM, Monacelli R, Cottalasso D, Novelli A. Effects of alloxan diabetes and insulin on morphology and certain functional activities of mitochondria of the rat liver and heart. Acta diabetologia latina. 1974;11(4):296-314.
[34].                 Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med. 2006 15;40(2):183-92.
[35].                 Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4(1):5.
[36].                 Malayeri AR, Albosuf F, Khalili HR, Bakhtiari N. Studying the effect of Suaeda aegyptiaca extract in comparison to the metformin on streptozotocin-nicotinamide induced type 2 diabetes rats. Iraq Medical Journal. 2018;2(1):5-9.
[37].                 Albosof F, Hoseini SA, Siahpoush A, Malayeri AR, Haghighizadeh MH. Anti-diabetic effects of S. aegyptiaca extract on streptozotocin-nicotinamide induced type 2 diabetes rats. Journal of Contemporary Medical Sciences. 2018;4(1).
[38].                 Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129-46.
[39].                 Brownlee M, Michael. Advanced protein glycosylation in diabetes and aging. Annual review of medicine. 1995;46(1):223-34.
[40].                 Vlassara H, Palace M. Diabetes and advanced glycation endproducts. Journal of internal medicine. 2002;251(2):87-101.
[41].                 Thomas MC, Forbes JM, Cooper ME. Advanced glycation end products and diabetic nephropathy. American journal of therapeutics. 2005;12(6):562-72.
[42].                 Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes research and clinical practice. 2005;67(1):3-21.
[43].                 Vlassara H, Striker G. Glycotoxins in the diet promote diabetes and diabetic complications. Current diabetes reports. 2007;7(3):235-41.
[44].                 Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40(4):405-12.
[45].                 Singh P, Mahadi F, Roy A, Sharma P. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian journal of clinical biochemistry. 2009;24(4):324-42.
[46].                 Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology. 2013;60:10-37.
[47].                 Pun PBL, Murphy MP. Pathological significance of mitochondrial glycation. International journal of cell biology. 2012;2012.
[48].                 Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194-222.
[49].                 Pamplona R, Requena JR, Portero‐Otín M, Prat J, Thorpe SR, Bellmunt MJ. Carboxymethylated phosphatidylethanolamine in mitochondrial membranes of mammals: evidence for intracellular lipid glycoxidation. European journal of biochemistry. 1998;255(3):685-9.
[50].                 Shangari N, O’Brien PJ. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochemical pharmacology. 2004;68(7):1433-42.
[51].                 Shangari N, Mehta R, O’Brien PJ. Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content. Chemico-biological interactions. 2007;165(2):146-54.
[52].                 de Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C, Münch G. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells—protection by carbonyl scavengers. Neurobiology of aging. 2007;28(7):1044-50.
[53].                 Wang H, Liu J, Wu L. Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochemical pharmacology. 2009;77(11):1709-16.
[54].                 Neviere R, Yu Y, Wang L, Tessier F, Boulanger E. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions. Glycoconjugate journal. 2016;33(4):607-17.
[55].                 Goudarzi M, Kalantari H, Rezaei M. Glyoxal toxicity in isolated rat liver mitochondria. Human & experimental toxicology. 2018;37(5):532-9.
[56].                 Hu Y, Shao Z, Cai X, Liu Y, Shen M, Yao Y, et al. Mitochondrial Pathway Is Involved in Advanced Glycation End Products-Induced Apoptosis of Rabbit Annulus Fibrosus Cells. Spine. 2019;44(10):E585-E95.
[57].                 Xu L, Fan Q, Wang X, Zhao X, Wang L. Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell death & disease. 2016;7(11):e2445.
[58].                 Huang S, Wang Y, Gan X, Fang D, Zhong C, Wu L, et al. Drp1-mediated mitochondrial abnormalities link to synaptic injury in diabetes model. Diabetes. 2015;64(5):1728-42.
[59].                 Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox biology. 2017;11:637-45.
[60].                 Lo M-C, Chen M-H, Lee W-S, Lu C-I, Chang C-R, Kao S-H, et al. N ε-(Carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells. American Journal of Physiology-Endocrinology and Metabolism. 2015;309(10):E829-E39.
[61].                 Yu Y, Wang L, Delguste F, Durand A, Guilbaud A, Rousselin C, et al. Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radical Biology and Medicine. 2017;112:397-410.
[62].                 Li D, Deng T, Lv J, Ke J. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts. Brazilian Journal of Medical and Biological Research. 2014;47(12):1036-43.
[63].                 Wang X-L, Yu T, Yan Q-C, Wang W, Meng N, Li X-J, et al. AGEs promote oxidative stress and induce apoptosis in retinal pigmented epithelium cells RAGE-dependently. Journal of Molecular Neuroscience. 2015;56(2):449-60.
[64].                 Nelson MB, Swensen AC, Winden DR, Bodine JS, Bikman BT, Reynolds PR. Cardiomyocyte mitochondrial respiration is reduced by receptor for advanced glycation end-product signaling in a ceramide-dependent manner. American Journal of Physiology-Heart and Circulatory Physiology. 2015;309(1):H63-H9.
[65].                 Wautier M-P, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier J-L. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology-Endocrinology And Metabolism. 2001;280(5):E685-E94.
[66].                 Laforge M, Rodrigues V, Silvestre R, Gautier C, Weil R, Corti O, et al. NF-κB pathway controls mitochondrial dynamics. Cell death and differentiation. 2016;23(1):89.
[67].                 Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, et al. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). Journal of Biological Chemistry. 2014;289(42):29285-96.
[68].                 Mao Y, Cai W, Sun X, Dai P, Li X, Wang Q, et al. RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products. Cell death & disease. 2018;9(6):674