بهینه‌سازی فرایند تصفیه فاضلاب تولیدی از صنایع بازیافت کاغذ با استفاده از کلریدمنیزیم در ترکیب با پلی‌آکریل‌آمیدهای (PAM) کاتیونی و آنیونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس‌ارشد مهندسی بهداشت محیط، مرکز تحقیقات علوم و فناوری‌های محیط‌زیست، دانشکده بهداشت، دانشگاه علوم پزشکی شهید صدوقی یزد، ایران

2 استاد گروه مهندسی بهداشت محیط، مرکز تحقیقات علوم و فناوری‌های محیط‌زیست، دانشکده بهداشت، دانشگاه علوم پزشکی شهید صدوقی یزد، ایران

3 کارشناس‌ارشد مهندسی محیط‌زیست، مرکز تحقیقات علوم و فناوری‌های محیط‌زیست، دانشکده بهداشت، دانشگاه علوم پزشکی شهید صدوقی یزد، ایران

چکیده

زمینه و هدف: تولید حجم بالایی ازفاضلاب،از جمله مشکلات صنایع بازیافت کاغذ است که ارائه راهکارهای مناسب اقتصادی و زیست‌محیطی به‌منظور مدیریت و تصفیه مناسب، ضروری می‌باشد؛ از این رو در این تحقیق، هدف بهینه‌سازی فرایند تصفیه فاضلاب تولیدی از صنایع بازیافت کاغذ با استفاده از کلریدمنیزیم در ترکیب با پلی‌آکریل‌آمیدهای کاتیونی و آنیونی بود.
مواد و روش‌ها: این تحقیق از نوع کاربردی بود که در مقیاس آزمایشگاهی انجام شد. در ابتدا مقادیر مختلف pH (12-4) با غلظت ثابتی از کلریدمنیزیم برای تعیین pH بهینه بررسی شد. سپس بهینه‌سازی غلظت برای کلریدمنیزیم (700-200 میلی‌گرم بر لیتر) و پلی‌آکریل‌آمیدها (3- 0/5 میلی‌گرم بر لیتر) انجام شد. در هر مرحله از بهینه‌سازی، پارامترهای TSS و COD اندازه‌گیری شد. تجزیه‌وتحلیل داده‌ها با ضریب همبستگی پیرسون (Pearson) و سطح معنی‌داری 0/05 انجام شد.
یافته‌ها: با توجه به نتایج به‌دست‌آمده، pH برابر 10 به‌عنوان pH بهینه و غلظت 500 و 1/5 میلی‌گرم بر لیتر به‌ترتیب به‌عنوان غلظت بهینه برای کلریدمنیزیم و پلی‌آکریل‌آمید کاتیونی انتخاب گردید. در شرایط بهینه، راندمان حذف TSS و COD به‌ترتیب 96 و 83/07درصد به‌دست آمد.
نتیجه‌گیری: نتایج نشان داد که کلریدمنیزیم در ترکیب با پلی‌آکریل‌آمید کاتیونی می‌تواند گزینه مناسبی برای تصفیه فاضلاب صنایع بازیافت کاغذ باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of wastewater treatment process from paper recycling industry with using magnesium chloride in combination with cationic and anionic polyacrylamides

نویسندگان [English]

  • tahereh zarei mahmoudabadi 1
  • Mohammad Hassan Ehrampoush 2
  • parvaneh talebi 3
1 MSc of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2 Professor of Environmental Health Engineering, Environmental Science and Technology Research Center, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3 MSc of Environmental Engineering, Environmental Science and Technology Research Center, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
چکیده [English]

Introduction: The production of high wastewater is one of the problems of recycling paper industry, it is essential to provide appropriate economic and environmental solutions for proper management and treatment. So in this research, the purpose was of optimization the treatment of wastewater products from the paper recycling industry with using magnesium chloride in combination with cationic and anionic polyacrylamides.
Materials and Methods: This was an applied researchwhich was done on a laboratory scale. The different pH (4-12) values at a fixed concentration of magnesium chloride to determine the optimum pH was investigated. Then optimization of concentration for magnesium chloride (200-700 mg/L) and polyacrylamides (0.5-3 mg/L) was performed. At each stage of optimization, the parameters of TSS and COD were measured. Pearson correlation coefficient was used for analysis of data and significance level was 0.05.
Results: According to the results, pH=10 as optimal pH and concentrations of 500 and 1.5 mg / L were selected as optimal concentrations for magnesium chloride and cationic polyacrylamide, respectively. Under optimal conditions, the efficiency of removing TSS and COD was 96% and 83.07%, respectively.
Conclusion: The results showed that magnesium chloride combined with cationic polyacrylamide, can be used as an appropriate option for wastewater treatment of paper recycling industries.

کلیدواژه‌ها [English]

  • Optimization
  • Coagulation/flocculation
  • Industrial wastewater
[1]. Katal R, Pahlavanzadeh P. Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater. Desalination. 2011;265:199–205.
[2]. Bakraoui M, Karouach F, Ouhammou B, Aggour M, Essamri A, El Bari H. Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions. Bioresour technol. 2020;25:e00402.
[3]. Kamali M, Khodaparast Z. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf. 2014:1-17.
[4]. Ashrafi O, Yerushalmi L, Haghighat F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. J environ manag. 2015;158:146-57.
[5]. Wong S, Teng T, Ahmad A, Zuhairi A, Najafpour G. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J Hazard Mater. 2006;135:378–88.
[6]. Birjandi N, Younesi H, Bahramifar N, Hadavifar M. Application of Chemical Coagulation Method for Paper-Recycling Wastewater Treatment. J Water and Wastewater. 2010; 62:56-62. [Persian]
[7]. Zarei Mahmoudabadi T, Ehrampoush M H, Talebi1 P, Fouladi-Fard R. Eslami H. Comparison of poly ferric chloride and poly titanium tetrachloride in coagulation and flocculation process for paper and cardboard wastewater treatment. Environ Sci Pollut Res Int. 2020; 1-11.
[8]. Dixit M, Liu H, Luo J, Shukla P. Effluents detoxification frompulp and paper industry using microbial engineering and advanced oxidation techniques. J Hazard Mater. 2020;398:122998.
[9]. Renault F, Sancey B, Charles J, Morin-Crini N, Badot P-M, Winterton P, et al. Chitosan flocculation of cardboard-mill secondary biological wastewater. Chem Engin J. 2009;155(3):775-83.
[10]. Ashrafi O, Yerushalmi L, Haghighat F. Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry. Environ Sci Pollut Res. 2013;20(3):1858-69.
[11]. Ashrafi O, Yerushalmi L, Haghighat F. Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry–Modeling and simulation. Int j greenh gas con. 2013;17:462-72.
[12]. Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater – a review. Sci Total Environ. 2004;333:37–58.
[13]. BilottaG S,  Brazier RE. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2005;42:2849–61.
[14]. Tiku DK, Kumar A, Chaturvedi, R, Dayal S, Manoharan A, Kumar R. Holistic bioremediation of pulp mill effluents using autochthonous bacteria. Int Biodeterior Biodegrad. 2011; 64: 173–183.
[15]. Zhang S, Jiang M, Zhou Z, Zhao M, Li Y. Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. Int Biodeterior Biodegrad. 2012; 75: 89–95.
[16]. Shankar R, Singh L, Mondal P, Chand S. Removal of lignin from waste-water through electro-coagulation. World J Environ Eng. 2013; 1: 16–20.
[17]. Herney-ramirez J, Silva AMT, Vicente MA, Costa CA, Madeira LM. Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: kinetic study with the Fermi's equation. Appl Catal B Environ. 2011; 101(3-4): 197–205.
[18]. [Xilei D, Tingzhi L, Weijiang D, Huiren H. Adsorption and coagulation tertiary treatment of pulp and paper mills wastewater. In: Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE).2010.
[19]. Ciputra S, Antony A, Phillips R, Richardson D, Leslie G. Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent. Chemosphere. 2010; 81: 86–91.
[20]. Gonder ZB, Arayici S, Barlas H. Advanced treatment of pulp and paper mill wastewater by nanofiltration process: effects of operating conditions on membrane fouling. Sep Purif Technol. 2011; 76: 292–302.
[21]. Birjandi N, Younesi H, Bahramifar N. Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Appl Water Sci. 2016;6(4):339-48.
[22]. Zarei Mahmudabadi T, Ebrahimi AA, Eslami H, Mokhtari M, Salmani MH, Ghaneian MT, et al. Optimization and economic evaluation of modified coagulation–flocculation process for enhanced treatment of ceramic-tile industry wastewater. AMB Express. 2018;8(1):172.
[23]. Kamali M, Khodaparast Z. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf. 2015;114:326-42.
[24]. Wong S, Teng T, Ahmad A, Zuhairi A, Najafpour G. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J hazard mater. 2006;135(1):378-88.
[25]. Zarei Mahmudabadi T, Ebrahimi A, Ghaneian MT, Mokhtari M, Salmani MH, Talebi P. Performance Evaluation of Tile Wastewater Treatment with Different Coagulants. JEHSD. 2016. 1(1):18-27.
[26]. Gao B-Y, Yue Q-Y, Wang Y, Zhou W-Z. Color removal from dye-containing wastewater by magnesium chloride. J environ manag. 2007;82(2):167-72.
[27]. Wang J, Chen C, Gao Q, Li T, Zhu F. Relationship between the characteristics of cationic polyacrylamide and sewage sludge dewatering performance in a full-scale plant. Procedia EnvironSci. 2012;16:409-17.
[28]. Wang J, Chen Y, Wang Y, Yuan S, Yu H. Optimization of the coagulation– flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Res. 2011; 45: 5633–5640.
[29]. Razali MAA, Ahmad Z, Ahmad MSB, Ariffin A. Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem Eng J. 2011;166: 529–535.
[30]. [30] Liu T, Hu H, He Z, Ni Y. Treatment of poplar alkaline peroxide mechanical pulping (APMP) effluent with Aspergillus niger. Bioresour Technol. 2011; 102: 7361–7365.
[31]. APHA. Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC. 2012.
[32]. Zayas T, Romero N, Salgado L, Meraz M, Morales U. Applicability of coagulation/flocculation and electrochemical processes to the purification of biologically treated vinasse effluent. Sep Purif Technol. 2007;57(2):270-6.
[33]. Tan BH, Teng TT, Omar AM. Removal of dyes and industrial dye wastes by magnesium chloride. Water Res. 2000;34(2):597-601.
[34]. Rawi SNM, Zularisam AW, Nasrullah M, Najib NWAZ. Pretreatment of Reactive Dye from Textile Wastewater by Coagulation Technology. Int J Res Eng Technol. 2016;3(12):28-33.
[35]. Eldemerdash U. Using Ceramic Materials for Enhanced Wastewater Treatment in Industrial Applications. int Ceram Review. 2011;60:100-4.
[36]. Bolto B, Gregory J. Organic polyelectrolytes in watertreatment. Water Res. 2007;41:2301–24.
[37]. Chong MF, Lee KP, Chieng HJ, Ramli IISB. Removal of boron from ceramic industry wastewater by adsorption–flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Res. 2009;43(13):3326-34.