نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،گروه فیزیولوژی ورزشی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 دانشیار،گروه فیزیولوژی ورزشی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

3 استادیار،گروه فیزیولوژی ورزشی، واحد آیت‌الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

4 دانشیار، گروه فیزیولوژی ورزشی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

چکیده

زمینه و هدف کبد چرب غیرالکلی، تجمع چربی در کبد است که خطر بروز بیماری قلبی- عروقی، کارسینومای کبدی و دیابت را افزایش می‌دهد و تمرینات بدنی می‌تواند احتمالاً سبب کاهش چربی کبدی گردد. هدف مطالعه حاضر، بررسی تأثیر هشت هفته تمرین هوازی با شدت بالا و متوسط بر سطوح سرمیFGF-21 و آنزیمPON-1 در کبد چرب غیرالکلی بود.
مواد و روش‌هادر این مطالعه تجربی 40 سر موش صحرایی نر بالغ ویستار (با میانگین وزن 10±210 گرم) به‌طور تصادفی به پنج گروه مساوی 1) کنترل (سالم) 2) کنترل (کبد چرب) 3) سالین 4) تمرین با شدت بالا و 5) تمرین با شدت متوسط تقسیم شدند. دوره تمرین در مدت هشت هفته، پنج جلسه در هفته و هر جلسه 45 دقیقه انجام شد. نمونه‌هایسرمیدر 48 ساعتپسازآخرینجلسهتمرینیودروضعیت 12 ساعتناشتاییجمع‌آوریشد. آنالیزواریانسیک‌طرفهوآزمونتوکیدرسطحP < 0.05مورداستفادهقرارگرفت.
یافته‌هاسطوح سرمی FGF-21 در گروه تمرین با شدت بالا و شدت متوسط در مقایسه با گروه کنترل (کبد چرب) کاهش معناداری داشت (P≤0.001). همچنین سطوح سرمی PON-1 در گروه تمرین با شدت بالا و شدت متوسط در مقایسه با گروه کنترل (کبد چرب) کاهش معناداری داشت (P≤0.01) و تفاوت معناداری بین دو گروه تمرینی مشاهده نشد.
نتیجه‌گیریطبق نتایج این مطالعه، تمرین ورزشی با شدت بالا و متوسط با کاهش FGF-21 و افزایشPON-1 سرمی می‌تواند سبب کاهش خطرات اختلالات کبدی در موش‌های صحرایی مبتلا به کبدچرب غیرالکلی گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of High and Moderate Aerobic Exercise on Serum Fibroplast-21 Growth Factor and Paraoxonase-1 Enzyme Activity in rat with Non-Alcohol-Fatty Liver

نویسندگان [English]

  • ghasem masodzade 1
  • alireza barari 2
  • Asieh AbbasiDaloii 3
  • parvin farzanegi 4

1 PhD Student, Department of Sport Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Associate Professor, Department of Sport Physiology , Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

3 Assistant Professor, Department of Sport Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

4 Associate Professor, Department of Sport Physiology, sari Branch, Islamic Azad University, sari,Iran

چکیده [English]

Introduction: Non-alcoholic fatty liver is a fatty liver accumulation that increases the risk of cardiovascular disease, liver carcinoma and diabetes, and physical exercises can possibly reduce liver fat. The purpose of this study was to investigate the effect of eight weeks of aerobic training on high and moderate levels on serum levels of FGF-21 and PON-1 in non-alcoholic fatty liver.
Materials and Methods: To five equal groups: 1 control(healthy); 2) control(Fatty Liver) ; 3) saline; 4) high intensity exercise; 5) moderate intensity exercises. The period of exercise trainings was performed at 8 weeks, five times a week and 45 minutes in an exercise session. Serum samples were collected 48 hours after the last exercise session and at 12- hour fasting. One-way analysis of variance and Tukey test were used at the level of P Results: The levels of FGF-21had a significant decrease in the high and moderate intensity exercise groups than the control(Fatty Liver) (P≤0.001). Also, the levels of PON-1 had a significant increase in the high and moderate intensity exercise groups than the control(Fatty Liver) (P≤0.01), but no significantly difference between the two groups was observed.
Conclusion: According to the results of this study, it seems that high and moderate intensity exercise training can decrease FGF-21 and increase paraoxonase-1 serum levels which can result in reduced risk of liver diseases in rat Nonalcoholic Fatty Liver Disease.

کلیدواژه‌ها [English]

  • fibroblast growth factor 21
  • PON1
  • Non-alcoholic Fatty Liver Disease
[1]. Hansen JS, Plomgaard P. Fibroblast growth factor 21: newinsights from human studies. CardiovascularEndocrinology & Metabolism 2016; 5(3):112-6.
[2]. Luo Z, Li S, Muhammad I, Karim MR, Song Y. Associations of the PON1 rs854560 polymorphism with plasma lipid levels: a meta-analysis.Lipids Health Dis. 2018 ,3;17(1):274.
[3]. Ipsen D V, Lykkesfeldt,J , Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease.Cell Mol Life Sci. 2018; 75(18): 3313–3327.
[4]. Torun E, Gokçe S, Aydın S, Cesur Y. Serum paraoxonase activity and oxidative stress and their relationship with obesity-related metabolic syndrome and non-alcoholic fatty liver disease in obese children and adolescents. Journal of Pediatric Endocrinology and Metabolism 2014;27(7- 8): 667–675. [5]. Takahashi H, Kotani K, Tanaka K, Egucih Y. Therapeutic Approaches to Nonalcoholic Fatty Liver Disease: Exercise Intervention and Related Mechanisms. Front Endocrinol (Lausanne). 2018; 9: 588.
[6]. Kartinah NT, Sianipar IR, Rabia, Nafi’ah .High Intermittent Intensity Training Induces FGF21 Secretion in Obese Rats. J Obes Metab. 2018
؛ 1: 103. [7]. Cuevas-Ramos D, Almeda-Valde´s P, Meza-Arana CE, Brito-Co´ rdova G, Gomez-Perez FJ, et al. Exercise Increases Serum Fibroblast Growth Factor 21 (FGF21) Levels. PLoS ONE. 2012؛ 7(5): e38022. doi:10.1371/journal .pone.
[8]. Kim J-S, Yoon DH, Kim H-j, Choi M-j, Song W. Resistance exercise reduced the expression of fibroblast growth factor-2 in skeletal muscle of aged mice. Integrative Medicine Research. 2016;5(3):230-5.
[9]. Karami M, Banitalebi E. The comparision of effect of 8weeks of intense interval training and combined strengthendurance training on fibroblast growth factor-21 (FGF-21)levels in women with type 2 diabetes. Journal of NursingEducation 2017; 6(3):37-46.
[10]. Taheri Chadorneshin H, Abtahi-Eivary SH, CheraghBirjandi S, Yaghoubi A. The Effect of Exercise Training Type on Paraoxonase-1 and Lipid Profile in Rats. Shiraz EMed J. 2017; 18(7):e46131.
[11]. Rudarli Nalcakan G, Rana Varol R, Turgay F, Nalcakan M. Effects of aerobic training on serum paraoxonase activity and its relationship with PON1-192 phenotypes in women.J Sport Health Sci. 2016; 5(4): 462–468.
[12]. Zou, Y., Li, J., Lu, C., Wang, J., Ge, J., Huang, Y., Zhang, L., Wang, Y. (2006): High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 79(11):1100–1107.
[13]. Cuevas-Ramos D, R. Mehta R and Carlos A. AguilarSalinas. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Physiol., 05 February 2019 | 10.3389
[14]. Azali Alamdari K, Khalafi M. The effect of high intensity interval training on serum levels of FGF21 and insulin resistance in obese men.Iranian Journal of Diabetes and Metabolism; 2018 ; 18(1):41-48. [15]. Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, FJ, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7(5):e38022. doi: 10.1371/journal.pone. 0038022. Epub 2012 May 31.
[16]. Tofighi A, Alizadeh R, Azar JT .The Effect of Eight Weeks High IntensityInterval Training (Hiit) on Serum Amounts of Fgf21 and Irisin in Sedentary Obese Women. J Urmia Univ Med Sci. 2017؛ 28: 453-466. [17]. Taniguchi H, Tanisawa K, Sun X, Cao Z, Oshima S, Ise R,et al. Cardiorespiratory fitness and visceral fat are key determinants of serum fibroblast growth factor 21 concentration in Japanese men. The Journal of clinical endocrinology and metabolism 2014; 99(10):E1877.
[18]. Kruse R, Vienberg SG, Vind BF, Andersen B, Højlund K. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 2017; 60(10):2042-51.
[19]. Xie T and Po Sing Leung PO. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am J Physiol Endocrinol Metab313: E292–E302, 2017
[20]. Johnson NA, George J. Fitness versus fatness: moving beyond weight loss in nonalcoholic fatty liver disease. Hepatology 2010; 52(1):370–381.
[21]. Linden MA, Fletcher JA, Morris EM, et al. Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc 2015; 47(3):556
[22]. Kim KH, Lee M-S. FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diabetes & metabolism journal 2014; 38(4):245-51.
[23]. Kathleen R. Markan. Defining “FGF21 Resistance” during obesity: Controversy, criteria and unresolved questions. 2018; 7: 289.
[24]. Zhang Y, Wang D, Liu Y, Zhang Y, Liu Y, Su Z, et al. Impacts of chronic exercise on human blood fibroblast growth factor 21 levels in normal people: a meta-analysis. Biomedical Research (0970-938X). 2017; 28(13).
[25]. Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014; 63(12):4057-63.
[26]. Fletcher JA, Linden MA, Sheldon RD, Meers GM, Morris EM, Butterfield A, et al. Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations. American Journal of Physiology-Gastrointestinal andLiver Physiology. 2016; 310(10):G832.
[27]. Jaganntha B, Nagarajappa K, Mallikarjuna CR. Serum paraoxonase activity, oxidative stress & lipid profile in patients with choronic liver disease. IJPBS 2013; 3(1):01-06.
[28]. Atli M. Serum paraoxonase activity and lipid hydroperoxide levels in adult football players after three days football tournament. Afr Health Sci. 2013;13(3):565–70.
[29]. Cakmak A, Zeyrek D, Atas A, Erel O. Paraoxonase activity in athletic adolescents. Pediatr Exerc Sci. 2010 Feb;22(1):93- 104.
[30]. Nalcakana GR, Varola SR, Turgaya F, Nalcakanb M, Zeki Ozkola M, Oguz KS. Effects of aerobic training on serum paraoxonase activity and its relationship with PON1-192 phenotypes in women. J Sport Health Sci.2016;5(4):462–8.
[31]. Mahdirejei TA, Razi M, Barari A, Farzanegi P, Mahdirejei HA, Shahrestani Z. A comparative study of the effects of endurance and resistance exercise training on PON1 and lipid profile levels in obese men. Sport Sci Health. 2015;11:263–70.
[32]. Atli M. Serum paraoxonase activity and lipid hydroperoxide levels inadult football players after three days football tournament. Afr Health Sci. 2013;13(3):565–70.