نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تخصصی فیزیولوژی ورزشی،گروه فیزیولوژی ورزشی دانشکده تربیت بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، ایران

2 دکترای تخصصی فیزیولوژی ورزشی، پژوهشگر مرکز پژوهشی علوم و فناوری اپیدمیولوژی، دانشگاه علوم پزشکی ارتش، تهران، ایران.

3 استاد، دکترای تخصصی فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی،دانشکده تربیت بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، ایران

4 استادیار، دکترای تخصصی بافت‌شناسی، گروه علوم پایه دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران

چکیده

زمینه و هدف: هدف پژوهش حاضر بررسی تاثیر 3 هفته کاهش بار تمرین در محیط هایپوکسی بر نسبت Bax/Bcl2 و جمعیت سلول های اپیتلیالی حبابچه های ریوی بود.
مواد و روش ها: 35 سر موش صحرائی (سن 4 هفته، وزن 8± 72 گرم) به 5 گروه کنترل (6 هفته)، تمرین (6 هفته)، هایپوکسی (3 هفته)، هایپوکسی کاهش بار (3 هفته) و کنترل (9 هفته) تقسیم شدند. نمونه ها پس از 6 هفته تمرین تناوبی وارد هایپوکسی شده و 3 هفته در آنجا زندگی کردند. گروه دیگری همزمان با قرارگیری در محیط هایپوکسی، به اجرای تمرینات تناوبی با شدت کمتر( کاهش بار) پرداختند. نسبت Bax/Bcl2 حبابچه های ریه با روش ایمونوهیستوشیمی و جمعیت نموسیت-1 و نموسیت-2 حبابچه های ریوی با روش استریولوژی اندازه گیری شد.
یافته ها: پس از 6 هفته تمرین تناوبی، نسبت Bax/Bcl2 و جمعیت نموسیت-2 افزایش و جمعیت نموسیت-1 کاهش یافت(05/0≥P). 3 هفته هایپوکسی سبب کاهش نسبت Bax/Bcl2 و کاهش جمعیت نموسیت-1 در مقایسه با گروه تمرین 6 هفته شد(05/0≥P). 3 هفته کاهش بار تمرین در گروه هایپوکسی، سبب کاهش نسبت Bax/Bcl2، کاهش نموسیت-2 و افزایش نموسیت-1 در مقایسه با گروه هایپوکسی شد (05/0≥P).
نتیجه گیری: به نظر می رسد تمرین تناوبی شدید و هایپوکسی متعاقب آن می تواند آپوپتوز حبابچه های ریوی را افزایش دهد. همچنین به نظر می رسد تکنیک کاهش بار تمرین ابزاری کارآمد جهت کاهش آپوپتوز در ریه است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of three weeks taper in hypoxic environment on apoptotic index of Bax / Bcl2 and population of alveolar epithelial cells

نویسندگان [English]

  • mehdi yadegari 1
  • Simin Riahy 2
  • Shadmehr Mirdar 3
  • Gholamreza Hamidian 4

1 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences,University of Mazandaran, Babolsar,Iran

2 PhD of Exercise Physiology, Researcher of Research Center of Epidemiology Science and Technology, Medical Sciences Army University, Tehran, Iran,

3 Associate Professor, PhD of Exercise Physiology, Department of Exercise Physiology, aculty of Physical Education and Sport Sciences, University of Mazandaran, Mazandaran, Iran

4 Department of Basic Sciences,Faculty of Veterinary Medicine, University of Tabriz,Tabriz,Iran

چکیده [English]

Background: This study investigated the effect of 3-weeks Taper in hypoxic environment on the ratio of Bax / Bcl2 and alveolar epithelial cells populations in the lung.
Materials and Methods: Thirty-five rats (4 weeks old, weighing 8 ± 72 g) were divided in five groups: control (6 weeks), training (6 weeks), hypoxia (3 weeks), hypoxia - taper (3 weeks) and control (9 weeks). Samples entered to the hypoxia after six weeks of interval training and lived there for 3 weeks. another group with exposure to hypoxic environment , implementation Taper technique.Bax/Bcl2 ratio of lung measured by immunohistochemistry and type II and type I pneumocytes population of pulmonary alveolar measured with stereologically.
Results: Bax/Bcl2 ratio and type II pneumocytes population Increased and type I pneumocytes population Decreased After six weeks high intensity interval training (P≤0.5).
Bax/Bcl2 ratio and type I pneumocytes population of hypoxia group decreased compared with training group (P≤0.5). three weeks taper in hypoxia group, Led to decrease of Bax/Bcl2 ratio , type II population pneumocytes and Increase of type I pneumocytes (P≤0.5).
Conclusion: It seems high intensity interval training and subsequent hypoxia can increase pulmonary alveolar apoptosis. also appears taper is a Efficient Method to decrease of apoptosis lung.

کلیدواژه‌ها [English]

  • High intensity interval training
  • pneumocytes
  • hypoxia
  • taper
  • apoptosis
1.         Jain M, Sznajder JI. Effects of hypoxia on the alveolar epithelium. Proceedings of the American Thoracic Society. 2005;2(3):202-5.
2.         Podhorska-Okolow M, Dzlegiel P, Gomulkiewicz A, Kisiela D, Dolinska-Krajewska B, Jethon Z, et al. Exercise-induced apoptosis in rat kidney is mediated by both angiotensin II AT1 and AT2 receptors. Histology and histopathology. 2006;21(4/6):459.
3.         Fleury C, Mignotte B, Vayssière J-L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84(2-3):1.43-31.
4.         Kamal Ranjbar  FN, Afshin Nazari, Mohammad Reza Golami. Effect of 10 Weeks Aerobic Exercise Training on Left Ventricular Systolic Function, Caspase-3 Level and Infarction Size in Myocardial Infarction Rat. Journal of Knowledge & Health of Shahroud University of Medical Sciences. 2015;10(3):20-9.
5.         Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology. 2008;9(1):47-59.
6.         Barbas-Filho J, Ferreira M, Sesso A, Kairalla R, Carvalho C, Capelozzi V. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). Journal of clinical pathology. 2001;54(2):132-8.
7.         Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Applied physiology, nutrition, and metabolism. 2011;36(5):608-17.
8.         Krüger K, Mooren FC. Exercise-induced leukocyte apoptosis. Exercise immunology review. 2014;20.
9.         Rietjens G, Keizer H, Kuipers H, Saris W. A reduction in training volume and intensity for 21 days does not impair performance in cyclists. British Journal of Sports Medicine. 2001;35(6):431-4.
10.       Yadegari M, Riahi S, Mirdar S, Hamidiyan GH,  yousefpour M. Riyahi F. Immunohistochemical detection of apoptotic factors Bax and Bcl-2 in the lung alveoli, followed by six weeks of high intensity exercise training. Daneshvar Medicine. 2016;24(129):31-40.
11.       Yadegari M, Riahi S, Mirdar SH, hamidiaan Gh, Mosadegh P. investigatingof IL-6 level and lung inflammatory cells after performing high-intensity interval training and Exposure to hypoxic environment. SJE. 2016;18(3):26-36..
12.       Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007;35.516-495(3).
13.       Coutts AJ, Wallace L, Slattery K. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. International journal of sports medicine. 2007;28(02):125-34.
14.       Bosquet L, Montpetit J, Arvisais D, Mujika I. Effects of tapering on performance: a meta-analysis. Medicine & Science in Sports & Exercise. 2007;39(8):1358-65.
15.       Ogura Y, Naito H, Kurosaka M, Sugiura T, Junichiro A, Katamoto S. Sprint-interval training induces heat shock protein 72 in rat skeletal muscles. Journal of sports science & medicine. 2006;5(2):194.
16.       Armstrong R, Laughlin MH. Rat muscle blood flows during high-speed locomotion. Journal of Applied Physiology. 1985;59(4):1322-8.
17.       Yadegari M MS, Hamidian Gh. The effect of high-intensity interval training on lung parenchymal and non-parenchymal structural changes. Daneshvar Medicine Journal 2016;23(124):56-60.
18.       Mirdar S, Arabzadeh E, Hamidian G. Effects of two and three weeks of tapering on lower respiratory tract in the maturing rat. Koomesh. 2015;16(3).
19.       Ochs M, Mühlfeld C. Quantitative microscopy of the lung: a problem-based approach. Part 1: basic principles of lung stereology. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2013;305(1):L15-L22.
20.       Hofman FM, Taylor CR. Immunohistochemistry. Current protocols in immunology. 2013;103(1):21.4. 1-.4. 6.
21.       Stuttfeld E, Ballmer‐Hofer K. Structure and function of VEGF receptors. IUBMB life. 2009;61(9):915-22.
22.       Di Cataldo S, Ficarra E, Acquaviva A, Macii E. Automated segmentation of tissue images for computerized IHC analysis. Computer methods and programs in biomedicine. 2010;100(1):1-15.
23.       Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Medicine & Science in Sports & Exercise. 2001;33(3):393-6.
24.       Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology. 2008;9(1):47.
25.       Krüger K, Agnischock S, Lechtermann A, Tiwari S, Mishra M, Pilat C, et al. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. Journal of Applied Physiology. 2011;110(5):1226-32.
26.       Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Medicine and science in sports and exercise. 2001;33(3):393-6.
27.       Arslan S, Erdem S, Sivri A, Hasçelik Z, Tan E. Exercise-induced apoptosis of rat skeletal muscle and the effect of meloxicam. Rheumatology international. 2002;21(4):133-6.
28.       Mason RJ. Biology of alveolar type II cells. Respirology. 2006;11(1).
29.       Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respiratory research. 2001;2(1):33.
30.       Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW, et al. Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of Applied Physiology. 2010;110(3):730-7.
31.       Greijer A, Van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. Journal of clinical pathology. 2004;57(10):1009-14.
32.       Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 2001;20(41):5779.
33.       Tramontano AF, Muniyappa R, Black AD, Blendea MC, Cohen I, Deng L, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochemical and biophysical research communications. 2003;308(4):990-4.
34.       Moudgil R, Michelakis ED, Archer SL. The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation. 2006;13(8):615-32.
35.       Lee S-D, Kuo W-W, Lin JA, Chu Y-F, Wang C-K, Yeh Y-L, et al. Effects of long-term intermittent hypoxia on mitochondrial and Fas death receptor dependent apoptotic pathways in rat hearts. International journal of cardiology. 2007;116(3):348-56.
36.       Korsmeyer S, Wei M, Saito M, Weiler S, Oh K, Schlesinger P. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell death and differentiation. 2000;7(12):1166.
37.       Anthony LM. Junquira’s Basic Histology Text and Atlas. Junqueira’s Basic Histology: Text and Atlas [Internet] McGraw-Hill. 2010.
38.       Farhangimaleki N, Zehsaz F, Tiidus PM. The effect of tapering period on plasma pro-inflammatory cytokine levels and performance in elite male cyclists. Journal of sports science & medicine. 2009;8(4):600.
39.       Souza KL, Gurgul-Convey E, Elsner M, Lenzen S. Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. Journal of Endocrinology. 2008;197(1):139-50.
40.       Papacosta E, Gleeson M. Effects of intensified training and taper on immune function. Revista Brasileira de Educação Física e Esporte. 2013;27(1):159-76.
41.       Izquierdo M, Ibañez J, Gonzalez-Badillo JJ, Ratamess NA. Detraining and tapering effects on hormonal responses and strength performance. Journal of Strength and Conditioning Research. 2007;21(3):768.
42.       Alway SE, Martyn JK, Ouyang J, Chaudhrai A, Murlasits ZS. Id2 expression during apoptosis and satellite cell activation in unloaded and loaded quail skeletal muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2003;284(2):R540-R9.