نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم ورزشی، دانشگاه بجنورد، بجنورد، ایران.

2 گروه علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران

3 گروه علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران.

4 گروه بیوشیمی بالینی، دانشگاه علوم پزشکی گناباد، گناباد، ایران

5 گروه علوم ورزشی، دانشگاه بجنورد، بجنورد، ایران

چکیده

گونه‌های اکسیژن واکنشی (ROS) موجب آسیب‌ اکسایشی پروتئین‌ها، لیپیدها و ساختارهای ژنومی می‌شود. مطالعات نشان داده-اند که تولید ROS در طی ورزش شدید افزایش می‌یابد. هدف مطالعه حاضر بررسی اثرات دو نوع تمرین ورزشی سرعتی و استقامتی روی سطوح 8 - اکسو گوانین DNA گلیکوسیلاز (1OGG) و میزان 8- هیدروکسی، 2- داکسی گوآنوزین (OHdGـ8) بافت‌ کبد و مغز موش‌های صحرایی نر ویستار بود. بدین منظور، 24 موش صحرایی نژاد آلبینو ویستار بالغ به طور تصادفی در سه گروه تمرین استقامتی، تمرین سرعتی و کنترل غیرفعال تقسیم شدند. موش‌ها در گروه تمرین استقامتی و سرعتی برای 6 هفته، 6 جلسه در هفته، با شدت 80 تا 100 درصد حداکثر اکسیژن مصرفی روی نوارگردان دویدند. سطوح 1OGG و OHdGـ8 به روش ساندویچ الایزا اندازه‌گیری شد. داده‌ها با استفاده از روش تحلیل واریانس یک طرفه در سطح 05/0 > P ارزیابی شدند. نتایج نشان داد که هر دو نوع تمرین سرعتی و استقامتی موجب افزایش معنی دار سطوح 1OGG بافت‌های مغز و کبد می‌شود. تمرین سرعتی موجب افزایش بیشتر سطوح 1OGG مغز نسبت به تمرین استقامتی شد. با وجود این، تمرینات سرعتی و استقامتی تاثیری معنی داری بر سطوح OHdGـ8 بافت مغز و کبد نداشت. سطوح 1OGG با OHdGـ8 به طور منفی و معنی دار همبسته بودند. به طور کلی، تمرینات ورزشی سرعتی و استقامتی از طریق افزایش محتوای 1OGG از آسیب اکسایشی ساختارهای ژنومی جلوگیری می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of exercise training type on 8-oxoguanine DNA glycosylase and 8-hydroxy-2'-deoxyguanosine levels in the brain and liver of rats

نویسندگان [English]

  • Hossein TaheriChadorneshin 1
  • Mohammad Esmaiel Afzalpour 2
  • Ehsan Afroozi-Gerow 3
  • Seyed Hosein Abtahi-Eivary 4
  • Meysam Alipour-Raz 5

1 Department of Sport Sciences, University of Bojnord, Bojnord, Iran

2 Department of Sport Sciences, University of Birjand, Birjand, Iran

3 Department of Sport Sciences, University of Birjand, Birjand, Iran.

4 Department of Clinical Biochemistry, Gonabad University of Medical Sciences, Gonabad, Iran.

5 Department of Sport Sciences, University of Bojnord, Bojnord, Iran

چکیده [English]

Reactive oxygen species (ROS) result in serious damage oxidation of proteins, lipids and genomic structures. Studies have shown that production of ROS increases during intensive exercise training. The aim of present study was to investigate the effect of two type sprint and endurance exercise trainings on 8-oxoguanine DNA glycosylase (OGG1) and hydroxy-2'-deoxyguanosine (8-OHdG) levels in the brain and liver of Wistar rats. 24 adult Albino Wistar rats were randomly divided into sedentary control, sprint exercise training, and endurance exercise training groups. Rats in sprint and endurance exercise training groups ran on treadmill for 6 weeks, 6 days per week, at 80 to 100 percent of maximal oxygen consumption. OGG1 and 8-OHdG levels were measured using sandwich ELISA assay. Data analyzed using one way ANOVA at P≤0.05 level. Results showed that both of sprint and endurance exercise trainings result in significant increase in OGG1 levels in brain and liver. Sprint exercise training resulted in greater increase in brain OGG1 than endurance exercise training. However, sprint and endurance exercise training had no significant effect on 8-OHdG levels in brain and liver tissues. OGG1 content correlated negatively with 8-OHdG levels. Collectively, sprint and endurance exercise trainings prevents from genomic structure through an increase in OGG1 contents.

کلیدواژه‌ها [English]

  • Sprint training
  • Endurance Training
  • Rat
1. Ogonovszky  H,  Berkes  I,  Kumagai  S,  Kaneko  T,  Tahara  S, Goto S, et al. The effects of moderate-, strenuous-and over-training on  oxidative  stress  markers,  DNA  repair, and  memory,  in  rat  brain. Neurochem Int. 2005; 46(8): 635-40.
2. Ogonovszky  H,  Sasvári  M,  Dosek  A,  Berkes  I,  Kaneko  T, Tahara  S,  et al.  The effects of moderate, strenuous, and overtraining on oxidative stress markers and DNA repair in rat liver. Can J Appl Physiol. 2005; 30(2): 186 -95.
3. Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise.  Free Radic Biol Med. 2008; 44(2): 153-9.
4. Radak Z, Toldy A, Szabo Z, Siamilis S,  Nyakas C, Silye G, et  al.  The  effects  of  training  and  detraining  on  memory,  neurotrophins  and  oxidative  stress  markers  in  rat  brain.  Neurochem Int. 2006; 49(4): 387-92.
5. Nikolaidis MG, Jamurtas AZ.  Blood  as  a  reactive  species  generator  and  redox  status  regulator  during  exercise.  Arch Bioch em Biophys. 2009; 490(2): 77-84.
6. Radák Z, Apor P, Pucsok J, Berkes I, Ogonovszky H, Pavlik G, et al.  Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci. 2003; 72(14): 1627-33.
7. Radak  Z,  Bori  Z,  Koltai  E,  Fatouros  IG,  Jamurtas  AZ,  Douroudos  II,  et  al.  Age-dependent  changes  in  8-oxoguanine-DNA  glycosylase  activity  are  modulated  by  adaptive  r esponses  to  physical  exercise  in  human  skeletal  muscle.  Free Radic Biol Med.  2011; 51(2): 417-23.
8. Radak Z, Kumagai S, Nakamoto H, Goto S.  8-Oxoguanosine  and  uracil  repair  of  nuclear  and  mitochondrial  DNA  in  red  and  white  skeletal  muscle  of  exercise-trained  old  rats.  J Appl Physiol (1985). 2007; 102(4): 1696-701.
9. Loft S, Astrup A, Buemann B, Poulsen HE. Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J. 1994; 8(8): 534-7.
10. Kasai  H,  Iwamoto‐Tanaka  N,  Miyamoto  T,  Kawanami  K, Kawanami  S,  Kido  R,  et al.  Life style and urinary 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage: effects of exercise, working conditions, meat intake, body mass index, and smoking. Jpn J Cancer Res. 2001; 92(1): 9-15.
11. Koltai  E,  Zhao  Z,  Lacza  Z,  Cselenyak  A,  Vacz  G,  Nyakas  C,  et al. Combined exercise and insulinlike growth factor -1 supplementation induces neurogenesis in old rats, but do  not  attenuate  age-associated  DNA  damage.  Rejuvenation Res.  2011; 14(6): 585-96.
12. Nakamoto H, Kaneko T, Tahara S, Hayashi E, Naito H, Radak Z, et al. Regular exercise reduces 8-oxodG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats. Exp Gerontol. 2007;42(4):287-95.
13. Radak  Z,  Atalay  M,  Jakus  J,  Boldogh  I,  Davies  K,  Goto  S.  Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med. 2009; 46(2): 238-43.
14. Chilibeck PD, Bell GJ, Farrar RP, Martin TP. Higher mitochondrial fatty acid oxidation following intermittent versus continuous endurance exercise training. Can J Physiol Pharmacol. 1998; 76: 891-894.
15. Frankiewicz-Jozko A, Faff J. Comparison of the effects of continuous versus intermittent exercises on the activity of superoxide dismutase in rat tissues. Biol Sport, 2005; 22(4): 341-352.
16. Haram  PM,  Kemi  OJ,  Lee  SJ,  Bendheim  MØ,  Al-Share  QY, Waldum  HL,  et al. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res. 2009; 81(4): 723-32.
17. Kostaropoulos I, Nikolaidis M, Jamurtas A, Ikonomou G. Comparison of the blood redox status between long-distance and shortdistance runners. Physiol Res. 2006; 55(6): 611.
18. Rasmussen  P,  Brassard  P,  Adser  H,  Pedersen  MV,  Leick  L,  Hart E, et al. Evidence for a release of brain‐derived neurotrophic  factor  from  the  brain  during  exercise.  Exp Physiol.  2009; 94(1): 1062-9.
19. Cooper C, Vollaard NB, Choueiri T, Wilson M. Exercise, free radicals and oxidative stress. Biochem Soc Trans. 2002; 30(2): 280-5.
20.  Lamprecht M, Greilberger J, Oettl K. Analytical aspects of oxidatively modified substances in sports and exercises. Nutrition. 2004; 20(7-8): 728-30.
21. Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; 189(1): 41-54.
22. Afzalpour ME, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol Behav. 2015; 147: 78-83.
23. Park K-S, Lee Y. Lymphocyte apoptosis in smokers and nonsmokers following different intensity of exercises and relation with lactate. Int J Exerc Sci. 2011; 4(3): 204 -216.
24. Forlenza MJ, Miller GE. Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosom Med. 2006; 68(1): 1-7.
25. Szabo Z. The role of regular physical activity on proteasome complex in traumatic brain injury [dissertation]. Semmelweis Univ., 2010.
26. Criswell D, Powers SC, Dodd S, Lawler JO, Edwards W, Renshler K, et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc. 1993; 25(10): 1135-40.
27. Jolitha A, Subramanyam M, Devi SA. Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status.  Exp Gerontol. 2006; 41(8): 753-63.