نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی بهداشت محیط، دانشکده بهداشت دانشگاه علوم پزشکی ایران

2 کارشناس ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران،تهران، ایران

3 استاد مهندسی بهداشت محیط، دانشکدة بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران

4 استاد گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران

5 دانشجوی کارشناسی ارشد بهداشت محیط، مرکز تحقیقات علوم و فناوری محیط زیست، دانشکدة بهداشت، دانشگاه علوم پزشکی شهید صدوقی یزد، تهران، ایران

چکیده

سابقه و هدف: امروزه با توجه به اثرات غیر قابل جبران فلزات سنگین و سموم بر اکوسیستم های آبزی، ارگانیسم ها و انسان ها، حذف آن ها از منابع آب بسیار حیاتی است. در سال های اخیر، روند جذب آلاینده ها با نانو ذرات مغناطیسی توجه زیادی به خود جلب کرده است. بنابراین مطالعه حاضر باهدف، سنتز نانوذره Fe3O4@SiO2-NH2-SH به‌عنوان یک جاذب جدید جهت حذف آلاینده های سرب و2,4-D از ماتریکس های آبی انجام گرفت.
مواد و روش‌ها: به منظور بررسی تاثیر متغیرهای pH(11-3)، زمان تماس(min150-0)، دوز جاذب (g/L2/1-2/0) و غلظت آلاینده ها (mg/L50-50) بر راندمان حذف و تعیین شرایط بهینه از روش One Factorial با کمک نرم افزار Design Expert استفاده گردید. جاذب به روش هم رسوبی شیمیایی سنتز گردید و سپس مورفولوژی آن با استفاده از دستگاه های TEM، XRD، FT-IR و SEM انجام گرفت. و در نهایت آزمایشات بر روی محلول آبی آزمایش گردید.
یافته‌ها: تجزیه و تحلیل ساختاری نشان داد که جاذب دارای ساختار کروی با هسته Fe3O4 و پوسته SiO2 است که توسط هر دو گروه عاملی آمین و تیول اصلاح شده است. نتایج آزمایشات نشان داد که بیشترین درصد حذف در سیستم مجزا برای سرب در pH برابر 5، زمان min40 و برای 2,4-D در pH برابر 6 و زمان min90 به دست آمد. همچنین در این سیستم مقادیر بهینه دوز جاذبg/L 8/0 و غلظت اولیه mg/L10 به دست آمد. در سیستم همزمان بیشترین درصد حذف در مقادیر بهینه pH برابر6 و زمان تماسmin 40 برای سرب وmin 60 برای 2,4-D و دوز جاذبg/L 2/1 تعیین گردید.
نتیجه‌گیری: طبق نتایج به دست آمده نانوذره سنتز شده چندمنظوره می تواند جاذب مناسبی برای حذف همزمان آلاینده های آلی و معدنی از محلول های آبی باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Efficiency comparison of single and binary mixture adsorption processes of lead (II) and 2, 4-D by bi-functional magnetic iron oxide nanoparticles from water matrix: kinetic studies

نویسندگان [English]

  • Ali Esrafili 1
  • Maryam Izanloo 2
  • Mahdi Farzadkia 3
  • Ahmad Joneidi Jafari 4
  • Mina Yousefi 5

1 Associate Professor, Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

2 Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran

3 Associate Professor, Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

4 Associate Professor, Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

5 MSc Student, Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences

چکیده [English]

Nowadays,due to the irreparable effects imposed on aquatic ecosystems,organisms and humans,the removal of heavy metals and herbicides from water sources has extremely become vital.In recent years, the process of adsorbing contaminants with magnetic nanoparticles has gained lots of attention.Therefore, the present study aimed to synthesize nanoparticles as an adsorbent for adsorption of the contaminants of Pb and 2,4-D from water. Materials and methods:To evaluate the effect of independent variables such as pH(3-11),contact time(0-150min),adsorbent dose(0.2-1.2g/L) and adsorbate concentration(5-50mg/L) on the contaminant removal and determine the optimal conditions, the method of one factor at the time was used by design expert software. Nanoparticles were synthesized via a co-precipitation method and their morphology were characterized by TEM,XRD,FT-IR and SEM. Finally, the experiments were performed on aqueous solution. Results: Structural analysis revealed that adsorbent has a spherical structure with a Fe3O4 core and SiO2 shell, modified by both amine and thiol functional groups.The results of experiments showed that the maximum adsorption efficiency of single system occurred at pH 5 and contact time 40 min for lead and at pH6 and contact time 90min for 2,4-D.Also the optimal values of adsorbent dose and initial concentration obtained 0.8 g/L and 10 mg/L. In the binary adsorption system,the maximum adsorption efficiency determined at pH 6 and contact time 40 min for lead and contact time 60 min for 2,4-D and adsorbent dose 1.2 g/L. Conclusion:According to the results,the bi-functional nanoadsorbent could be effectively used for the simultaneous removal of inorganic and organic pollutants from various aqueous solutions.

کلیدواژه‌ها [English]

  • adsorption
  • Fe3O4@SiO2-NH2-SH Np
  • lead
  • 2
  • 4-D
[1].   Karimi Takanlu L, Farzadkia M, Mahvi AH, Esrafily A, Golshan M. Optimization of adsorption process of Cadmium ions from synthetic wastewater using synthesized iron magnetic nanoparticles (Fe3O4). Iranian Journal of Health and Environment 2014; 7(2): 84-171. )Persian(
[2].   Salman JM, Al-Saad KA. Adsorption of 2, 4-Dichlorophenoxyacetic acid onto date seeds activated carbon: Equilibrium, kinetic and thermodynamic studies. Int J Chem Sci, 2012; 10: 677. 2012;690.
[3].   Koner S, Pal A, Adak A. Use of surface modified silica gel factory waste for removal of 2, 4-D pesticide from agricultural wastewater: a case study. International Journal of Environmental Research 2012; 6(4): 995-1006.
[4].   Hameed B, Salman J, Ahmad A. Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials 2009; 163(1): 121-26.
[5].   Ova D, Ovez B. 2, 4-Dichlorophenoxyacetic acid removal from aqueous solutions via adsorption in the presence of biological contamination. Journal of Environmental Chemical Engineering 2013; 1(4): 813-21.
[6].   Raouf GA, Qusti SY, Ali AM, Dakhakhni TH. The mechanism of 2, 4-dichlorophenoxyacetic acid neurotoxicity on rat brain tissue by using FTIR spectroscopy. Life Science Journal 2012; 9(4): 1686-97.
[7].   Bradl H. Heavy metals in the environment: origin, interaction and remediation: Academic Press; 2005.
[8].   Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Biotechnology 2004; 3(1): 71-90.
[9].   Singh O, Labana S, Pandey G, Budhiraja R, Jain R. Phytoremediation: an overview of metallic ion decontamination from soil. Applied microbiology and biotechnology 2003; 61(5-6): 405-12.
[10].Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management 2011; 92(3): 407-18.
[11].Kundu S, Pal A, Dikshit AK. UV induced degradation of herbicide 2, 4-D: kinetics, mechanism and effect of various conditions on the degradation. Separation and Purification Technology 2005; 44(2): 121-9.
[12].Jung BK, Hasan Z, Jhung SH. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal organic framework. Chem Eng J. 2013; 234: 99-105.
[13].Afkhami A, Saber-Tehrani M, Bagheri H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. Journal of Hazardous Materials 2010; 181(1): 836-44.
[14].Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal 2015; 270: 393-404.
[15].Koner S, Pal A, Adak A. Use of surface modified silica gel factory waste for removal of 2, 4-D pesticide from agricultural wastewater: a case study. International Journal of Environmental Research 2012; 6(4): 995-1006.
[16].Singh S, Barick K, Bahadur D. Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomaterials and Nanotechnology 2013; 3: 20.
[17].Mdoe J. direct synthesis of SH/NH2 bifanctionalzed mesoporous silica using cardanol as a template. Clean water for today and tonoppow 2017.
[18].Wang W, Fang C, Wang X, Chen Y, Wang Y, Feng W, et al. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy. Nanoscale 2013; 5(14): 53-6249.
[19].Chiu S-J, Wang S-Y, Chou H-C, Liu Y-L, Hu T-M. Versatile synthesis of thiol-and amine-bifunctionalized silica nanoparticles based on the ouzo effect. Langmuir 2014; 30(26):7 676-86.
[20].Zhang J, Ding T, Zhang Z, Xu L, Zhang C. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells. PloS one 2015; 10(4): e0123395.
[21].Esrafily A, Farzadkia M, Jonidi Jafari A, Izanloo M. Removal of 2,4-Dichlorophenoxyacetic Acid Herbicide From Aqueous Solutions by Functionalization Nanoparticles Magnetic: Equilibrium, Kinetic, and Thermodynamic Studies. JNKUMS. 2018; 9 (4) :1-8. (Persian)
[22].Ehrampoush MH, Miria M, salmani MH. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering 2015; 13: 1-9.
[23].Tahergorabi M, Esrafili A, Kermani M, Shirzad-Siboni M. Application of thiol-functionalized mesoporous silica-coated magnetite nanoparticles for the adsorption of heavy metals. Desalination and Water Treatment 2016; 57(42): 19834-45.
[24].Standard Method for Water and Wastewater Treatmebt. 2003.
[25].Tan Y, Chen M, Hao Y. High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal 2012; 191: 104-11.
[26].Naiya TK, Bhattacharya AK, Das SK. Adsorption of Cd (II) and Pb (II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science 2009; 333(1): 14-26.
[27].Yuan Q, Chi Y, Yu N, Zhao Y, Yan W, Li X, et al. Amino-functionalized magnetic mesoporous microspheres with good adsorption properties. Materials Research Bulletin 2014; 49: 279-84.
[28].Qiu H, Lv L, Pan B-c, Zhang Q-j, Zhang W-m, Zhang Q-x. Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A. 2009; 10(5): 716-24.
[29].Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials 2009; 167(1): 560-66.
[30].Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science 2010; 349(1): 293-99.
[31].Strand M. Amino-Functionalized Magnetic Nanoparticles for Extraction of Naphthenic Acids: NTNU; 2016.
[32].Yao QX, Jia MC, Men JF, editors. Synthesis of HS/NH2-bi-functional mesoporous silica and its adsorption of Co (II) and Mn (II) in dilute solutions. Applied Mechanics and Materials; 2012: Trans Tech Publ.
[33].Kakavandi B, Jonidi Jafari A, Rezaei Kalantary R, Nasseri S, Esrafili A, Gholizadeh A, et al. Simultaneous adsorption of lead and aniline onto magnetically recoverable carbon: Optimization, modeling and mechanism. Journal of Chemical Technology and Biotechnology 2016; 91(12): 3000-10.
[34].Bakhtiary S, Shirvani M, Shariatmadari H. Characterization and 2, 4-D adsorption of sepiolite nanofibers modified by N-cetylpyridinium cations. Microporous and Mesoporous Materials 2013; 168: 30-36.
[35].Zhang F, Song Y, Song S, Zhang R, Hou W.Synthesis of magnetite–graphene oxide-layered double hydroxide composites and applications for the removal of Pb (II) and 2, 4-dichlorophenoxyacetic acid from aqueous solutions. ACS applied materials & interfaces 2015; 7(13): 7251-63.
[36].Ptaszynski B,  Zwolinska Z. Lead (II) and cadmium (II) compounds with 2,4 dichlorophenoxyacetic acid (2,4D) and 2-(2,4-dichlorophenoxy)-propionic acid (2,4DP): Synthesis and properties. Journal of Thermal Analysis and Calorimetry 2004; 75: 301.
[37].Zhang S, Zhang Y, Liu J, Xu Q, Xiao H, Wang X, et al. Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chemical Engineering Journal 2013; 226: 30-8.
[38].Singh S, Barick K, Bahadur D. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials 2011; 192 (3): 1539-47.
[39].Sengil  IA, Özacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials 2008; 166 (2-3): 1488-94.
[40].Mata Y, Blázquez M, Ballester A, González F, Munoz J. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. Journal of Hazardous Materials 2009; 163(2): 555-62.
[41].Roundhill DM. Extraction of metals from soils and waters: Springer Science & Business Media; 2001.
[42].Jiang L, Li S, Yu H, Zou Z, Hou X, Shen F, et al. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Applied Surface Science 2016; 369: 398-413.