نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد بیوشیمی-گروه زیست سلولی و مولکولی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

2 گروه زیست سلولی و مولکولی-دانشکده علوم پایه-بابلسر-مازندران-ایران

3 گروه زیست سلولی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

4 گروه زیست سلولی و مولکولی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

چکیده

اهداف: سمیت فلزات و ترکیبات آن توسط خواص فیزیکوشیمیایی تعیین می شود. بنابراین، فلزات ممکن است برای اتصال به سایت های بیولوژیکی به رقابت بپردازند و در نتیجه باعث عملکرد نادرست ماکرومولکول های بیوشیمیایی شوند. این مطالعه با هدف بررسی سمیت نانوذره نیکل در مقایسه با کلرید نیکل بر فعالیت آنزیم های کبدی و بررسی تغییرات هیستوپاتولوژی بافت کبد در موش صحرایی نر انجام شد.
مواد و روش ها: در این مطالعه تجربی، 48 سر موش صحرایی نر بالغ به 6 گروه تجربی، یک گروه کنترل ویک گروه شم تقسیم شدند. گروه های تجربی، نانوذرات نیکل و کلرید نیکل با غلظت 5 ، 15 و 25 میلی گرم بر کیلوگرم به صورت درون صفاقی دریافت کردند. پس از یک هفته تزریق، خون و نمونه بافتی جهت آنالیز جمع آوری شد. سنجش فعالیت آنزیم های کبدی و مطالعات هیستوپاتولوژی انجام شد. نتایج با استفاده از آنوا وتست تعقیبی توکی آنالیز شد.
یافته ها: فعالیت آنزیم های ASTوALP در دوزهای مختلف نانوذره نیکل و کلرید نیکل و فعالیت LDH در دوزهای مختلف کلرید نیکل تغییرات معنی داری در گروه های مورد مطالعه نشان داد (05/0p

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparative study on toxicity of Ni nanoparticle and Nickel chloride on liver enzymes and tissue in Rats

نویسندگان [English]

  • Farnosh Anoosha 1
  • Bagher Seyedalipour 2
  • Ali Taravati 3
  • Monireh Movahedi 4

1 Department of Cellular and Molecular Biology, Faculty of Life Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.

2 Department of Cellular and Molecular Biology, faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran

3 Department of Cellular and Molecular Biology, faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran

4 Department of Cellular and Molecular Biology, Faculty of Life Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.

چکیده [English]

Background & Objectives: The toxicity of metals and their compounds is determined by their physicochemical properties. Thus, metals may compete for the biological binding sites and lead to incorrect function of biochemical macromolecules. The aim of this study was to investigate Ni NPs toxicity in compared to Nickel chloride on liver enzyme activity and the histopathological changes of liver tissue in male wistar rats.
Materials and Methods: In this experimental study, 48 male rates were divided into six experimental groups and one control group and one sham group (n=6). Experimental groups received Ni NPs and nickel chloride with concentration of 5, 15 and 25 mg/ kg by intraperitoneal injection. At the end of 7th day, blood and liver specimen was collected for analysis. Assay of the activity of liver enzyme and histopathological study were performed. Data were analyzed using ANOVA and Tukey test.
Results: Enzyme activities of AST and ALP in different doses of Ni NPs and nickel chloride and LDH activity in different doses of nickel chloride showed significant changes in the studied groups (p > 0.05). Histopathological study of liver were revealed dose dependent changes in rats treated with nickel chloride and nanoparticles compared to the control group. Some of the changes including necrosis, congestion, apoptosis and steatohepatitis was observed after exposure to different doses.
Conclusion: Increasing of concentration liver enzymes and histopathological changes confirms the toxicity of Ni NPs and nickel chloride

کلیدواژه‌ها [English]

  • Nickel nanoparticles
  • Nickel chloride
  • liver enzymes
  • Rat
  • Histopathological
[1] Duda-Chodak A, Baszczyk U. The impact of nickel on human health. J Elementol. 2008, 13(4): 685-696.
[2] Nie J, Pan Y, Shi J, Guo Y, Yan Z, Duan X, et al. A Comparative study on the uptake and toxicity of nickel added in the form of different salts to maize seedlings. Int J Environ Res Public Health. 2015 Nov 30; 12(12):15075-87.
[3] Melo DR; Leggett, RW. A biokinetic model for systemic nickel. Health Physics. 2017; 112 (1): 18–27.
[4] Saito M, Arakaki R, Yamada Y, Tsunematsu T, Kudo Y, Ishimaru  N. Molecular mechanisms of nickel allergy. Int J Mol Sci. 2016; 17(2); 202.
[5] Hongrui G, Lian C, Hengmin C, Xi P, Jing F, Zhicai Z, et al. Research advances on pathways of nickel-induced apoptosis. Int J Mol Sci. 2016; 17(1): 10.
[6] Antonietta Zoroddu M,  Schinocca L. Molecular mechanisms in nickel carcinogenesis: modeling Ni (II) binding site in histone H4. Environ Health Perspect. 2002 Oct; 110 (Suppl 5): 719–723.
[7] Munoz A, Costa M. Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity. Toxicol Appl Pharmacol. 2012; 260:1–16.
[8]  Li Y, Li X, Li Z, Gao H. Surface-structure-regulated penetration of nanoparticles across a cell membrane. Nanoscale. 2012; 4:3768-3775.
[9] Jiang W, Wang Q, Qu X, Wang L, Wei X, Zhu D, et al. Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Sci Total Environ.2017; 574: 771–780.
[10] Duan Y, Li J. Structure study of nickel nanoparticles. Mater Chem Phys. 2004; 87(2-3): 452-457.
[11] Mendes R, Fernandes AR, Baptista PV. Gold nanoparticle approach to the selective delivery of gene silencing in cancer-The case for combined delivery? Genes. 2017; 8(3): 94.
[12] Deknudt G, Leonard A. Mutagenicity tests with nickel salts in the male mouse. Toxicology. 1982; 25: 289–292.
[13] Liu F, Chang X, Tian M, Zhu A, Zou L, Han A, et al Nano NiO induce liver toxicity via activating NF-κB signaling pathway in rats.Toxicol Res. 2017; 6: 242-250.
[14] Pari L, Prasath A. Efficacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats. Chem Biol Interact. 2008; 173(2):77–83.
[15] Adjroud O .The toxic effects of nickel chloride on liver, erythropoiesis, and development in Wistar albino preimplanted rats can be reversed with selenium pretreatment. Environ Toxicol. 2013; 28(5):290-8.
[16] Magaye R, Yue X, Zou B, Shi H, Yu H, Liu K, et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine. 2014; 9: 1393–1402.
[17] Ali AT, Penny CB, Paiker JE, Van Niekerk C, Smit A, Ferris WF. Alkaline phosphatase is involved in the control of adipogenesis in the murine preadipocyte cell line, 3T3-L1. Clin Chim Acta. 2005; 354(1-2): 101-9.
[18] Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of liver fibrosis: Clinical translation of molecular pathogenesis or based on liver-dependent malfunction tests. Clin Chim Acta. 2007; 381 (2): 107-113.
[19] Katsnelson BA, Minigaliyeva IA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, et al. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol. 2015 Dec; 86:351-64.
[20] El-Demerdash FM. Lipid peroxidation, oxidative stress and acetyl cholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem Toxicol.2011 Jun; 49(6):1346-52.
[21] Hughes BP, Barritt GJ. Inhibition of the liver cell receptor-activated Ca+2 inflow system by metal ion inhibitors of voltage-operated Ca+2 channels but not other inhibitors of Ca+2 inflow. Biochimica et Biophysica Acta. 1989 Oct; 1013(3):197-205.
[22] Patel PK, Hindala M, Kohli B, Hajela K. Divalent metal ions binding properties of goat serum mannose binding lectin. Int J Biol Macromol.2015 Sep; 80:324-7.
[23] Funakoshi T, Inoue T, Shimada H, Kojima SH.The mechanisms of nickel uptake by rat primary hepatocyte cultures: role of calcium channels. Toxicology 1997 Dec 19; 124(1):21-6.
[24] Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol.2008 Aug; 82(8):493-512.