نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه فیزیولوژی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار، گروه فیزیولوژی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد، گروه فیزیولوژی، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

سابقه و هدف:هستة لوکوس‌سرولئوس حاوی دسته‌های بزرگی از نورون‌های نورآدرنرژیک است که ارتباط گسترده‌ای با دیگر نواحی سیستم عصبی مرکزی از جمله هیپوتالاموس دارد. این هسته در تنظیم فرایندهای شناختی شامل توجه، یادگیری، حافظه و وابستگی به اوپیات‌ها نقش ایفا می‌کند. هر چند اثر تحریکی اورکسین A بر نورون‌های هستة لوکوس‌سرولئوس نشان داده شده است، اثر آن بر انتقالات مهاری سیناپسی نورون‌های این هسته ناشناخته است. بنابراین، در این مطالعه اثر اورکسین A بر جریان‌های مهاری گابائرژیک نورون‌های هستة لوکوس‌سرولئوس بررسی شده است.
مواد و روش‌ها: از ناحیة ساقة مغز در محل حاوی نورون‌های هستة لوکوس‌سرولئوس، برش‌های عرضی با ضخامت 300 میکرون تهیه شد. جریان‌های مهاری پس‌سیناپسی خودبه‌خودی در حضور آنتاگونیست گیرنده‌های AMPA (CNQX) و NMDA (AP5) در مایع خارج سلولی، همچنین مهارگر کانال‌های سدیمی (QX314) در مایع داخل سلولی به‌روش whole-cell patch clamp ثبت شد. تأثیر اورکسین بر این جریان‌ها با افزودن اورکسین با غلظت 100 nM به مایع خارج سلولی بررسی شد.
یافته‌ها: در این مطالعه، نشان داده شد که اورکسین A سبب کاهش فرکانس وقوع جریان‌های مهاری پس‌سیناپسی خودبه‌خودی در نورون‌های هستة لوکوس‌سرولئوس می‌شود، ولی بر دامنة این جریان‌ها بی‌تأثیر است. این اثر با کاربرد SB-334867، آنتاگونیست اختصاصی گیرندة نوع یک اورکسین مهار می‌شود.
نتیجه‌گیری: این مورد نخستین مطالعه‌ای است که نشان می‌دهد اورکسین A سبب کاهش فرکانس جریان‌های مهاری پس‌سیناپسی خودبه‌خودی در هستة لوکوس‌سرولئوس می‌شود و این اثر را از طریق گیرندة نوع یک و به‌صورت پیش‌سیناپسی انجام می‌دهد. این مطلب، شاهد ارزشمندی برای نقش سیگنالی اورکسین A را در نورون‌های هستة لوکوس‌سرولئوس فراهم می‌کند.

کلیدواژه‌ها

عنوان مقاله [English]

Inhibitory effect of orexin-A on GABAergic synaptic transmission in rat locus coeruleus neurons

نویسندگان [English]

  • Yousof Mousavi 1
  • Hossein Azizi 2
  • Javad Mirnajafi-Zadeh 3
  • Mohammad Javan 3
  • Saeed Semnanian 3

1 1. PhD Student, Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Assistant Professor, Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

3 Professor, Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

چکیده [English]

Background: The locus coeruleus (LC) contains large clusters of noradrenergic neurons which project widely throughout the central nervous system including hypothalamus. The LC is involved in cognitive processes, including attention, learning, memory and drug addiction. Orexin neuropeptides excite the noradrenergic LC neurons; however, its effects on inhibitory synaptic transmission to the LC neurons are unknown.
Materials and Methods: Here, we investigated the effect of orexin-A (100 nM) on sIPSCs in LC neurons. We used whole-cell patch clamp recording in rat horizontal slices containing the LC nucleus.
Results: Our electrophysiological data indicate that orexin-A application only decreased sIPSCs frequency of LC neurons that was blocked by SB-334867, selective orexin type-1 receptors.
Conclusion: In this study, our findings suggest that orexin-A depresses sIPSCs frequency through orexin type-1 receptors. It can be deduced that these changes in inhibitory synaptic transmission may be elicited by prestsynaptic mechanism. These results provide in vitro evidence for a critical role of orexin signaling in LC neurons.
 
 

کلیدواژه‌ها [English]

  • Orexin-A
  • whole-cell patch clamp recording
  • Locus coeruleus
  • GABA
  1. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971; 367: 1-48.
  2. Coull JT1, Büchel C, Friston KJ, Frith CD. Noradrenergically mediated plasticity in a human attentional neuronal network. Neuroima. 1999; 10(6): 705-15.
  3. Berridge CW1, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003; 42(1): 33-84.
  4. Foote SL, Bloom FE, Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 1983; 63(3): 844-914.
  5. Andersen P, Eccles JC, Loyning Y. Pathway of postsynaptic inhibition in the hippocampus. J Neurophys. 1964; 27: 608-19.
  6. Eccles JC. The ionic mechanisms of excitatory and inhibitory synaptic action. Ann N Y Acad Sci. 1966; 137(2): 473-94.
  7. Eccles JC. The development of the cerebellum of vertebrates in relation to the control of movement. Natu. 1969; 56(11): 525-34.
  8. Eccles JC, Llinas R, Sasaki K. The inhibitory interneurons within the cerebellar cortex. Exp Brain Res. 1966; 1: 1-16.
  9. Ito M. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci. 2002; 3: 896-902.
  10. Roberts E. Disinhibition as an organizing principle in the nervous system. The role of gamma-aminobutyric acid. Adv Neurol. 1974; 5: 127-143.
  11. Roberts E. What do GABA neurons really do? They make possible variability generation in relation to demand. Exp Neurol. 1986; 93: 279-290.
  12. Palacios JM, Wamsley JK, Kuhar MJ. High affinity GABA receptorsautoradiographic localization. Brain Res. 1981; 222: 285-307.
  13. Suzdak PD, Gianutsos G. GABA-noradrenergic interaction: evidence for differential sites of action for GABA-A and GABA-B receptors. J of Neural Trans. 1985; 64: 163-172.
  14. Breuker E, Dingledine R, Iversen LL. Evidence for naloxone and opiates as GABA antagonists. Br J Pharmacal. 1976; 58(3): 458P.
  15. Mody I, Pearce RA. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci. 2004; 27(9): 569-575.
  16. Iverse LL, Schon FE. The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurones in CNS. In: Mandll AJ. New Concepts in Neurotransmitter Regulation. ed. New York: Plenum Press; 1973; 153-193.
  17. BelinMF, Aguera M, Tppaz M, McRae-Degueurec A, BoBillier P, Pujol JF. GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal grey in the rat: A biochemical and radioautographic study. Brain Res. 1979; 170: 279-297.
  18. Perez e la, mora M, Possani LD, Tapia R, Teran L, Palacios R, Fuxe K, Hokfelt T, Ljungdahl A. Demonstration of central gama-aminobutyrate-containing nerve terminals by means of antibodies against glutamate decarboxylase. Neurosci. 1981; 6: 875-895.
  19. Ennis M, Aston-Jones G. GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J of Neurosci. 1989; 9(8): 2973-2981.
  20. Guyeneta PG, Aghajaniana GK. ACh, substance P and met-enkephalin in the locus coeruleus: Pharmacological evidence for independent sites of action. Eur J of Pharmacol. 1979; 53(4): 319-328.
  21. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000; 27(3): 469-74.
  22. Aston-Jones G. Locus coeruleus, A5 and A7 noradrenergic cell groups. In: Aston-Jones G, editor. The Rat Nervous System. Elsevier; 2004; 259-294.
  23. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik T, Bartlett FS, Frankel WN, van Den Pol AN, Bloom FE, Sutcliffe KM, Gautvik JG. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U.S.A. 1998; 95(1): 322-327.
  24. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM,Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Haynes RE, Buckingham AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998; 92(4): 573-585.
  25. Hervieu JG, Cluderay JE, Harrison DC, Roberts JC, Leslie RA. Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neurosci. 2001; 103(3): 777-797.
  26. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954; 47(6): 419-27.
  27. Velley L, Chaminade C, Roy MT, Kempf E, Cardo B. Intrinsic neurons are involved in lateral hypothalamic self-stimulation. Brain Res. 1983; 268(1): 79-86.
  28. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003; 38(5): 701-13.
  29. Azizi H, Mirnajafi-Zadeh J, Rohampour K, Semnanian S. Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats. Neurosci Lett. 2010; 482: 255-9.
  30. Liu RJ, van den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J of Neurosci. 2002; 22(21): 9453-9464.
  31. Korotkova TM, Eriksson KS, Haas HL, Brown RE. Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regula Pepti. 2002; 104(1-3): 83-89.
  32. Zheng H, Corkern M, Stoyanova I, Patterson LM, Tian R, Berthoud HR. Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J of Physi Reguland Integ of Compa Physiol. 2003; 284: R1436-R1444.
  33. Baldo BA, Gual-Bonilla L, Sijapati K, Daniel RA, Landry CF, Kelley AE. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. European J of Neurosci. 2004; 19(2): 376-386.
  34. Soderpalm AH, Berridge KC. Food intake after diazepam, morphine or muscimol: microinjections in the nucleus accumbens shell. Pharmacol Biochem and Behavi. 2000; 66(2): 429-434.
  35. Rao TL, Kokare DM, Sarkar S, Khisti RT, Chopde CT, Subhedar N. GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats. Pharmacology, Biochem and Behavi. 2003; 76(3-4): 417-423.
  36. Khaimova E, Kandov Y, Israel Y, Cataldo G, Hadjimarkou MM, Bodnar RJ. Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Res. 2004; 1026(2): 284-294.
  37. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J of Neurosc. 1998; 18(19): 7962-7971.
  38. Lu L, Liu D, Ceng X, Ma L. Differential roles of corticotropin-releasing factor receptor subtypes 1 and 2 in opiate withdrawal and in relapse to opiate dependence. European J of Neurosci. 2000; 12(12): 4398-4404.
  39. Yasui Y, Masaki E, Kato F. Sevoflurane directly excites locus coeruleus neurons of rats. Anesthesiol. 2007; 107(6): 992-1002.
  40. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA iscritical for the induction of synaptic plasticity and behavioral sensitization tococaine. Neuron. 2006; 49: 589-601.
  41. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007; 87(4): 1215-84.
  42. Foster TC, McNaughton BL. Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus. 1991; 19(1): 79-91.
  43. Yu-Cheng Ho, et al. Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-Arachidonoylglycerol)-induced disinhibition. Jurnal of Neurosc. 2011; 31(41): 14600-14610.